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Ramp rate and concentration slope estimation
Estimating the ramp rate from a series of molecule absorptions. Here we discuss constraints on the estimation of
the ramp rate c1 and the concentration slope g. Following [1, 2, 3], we approximate a cell as an idealized measuring
device: a sphere of radius a that absorbs all molecules that come in contact with its surface.

We begin by recalling relevant results of [3]. The average flux of molecules (molecules × time−1) arriving at the
surface of the sphere at position x, time t is 〈I(x, t)〉 = 4πDaC(x, t) [1, 3] , which is equivalent in our notation to
〈I(t)〉 = 4πDac(t). Again, the far-field chemoattractant concentration in the medium surrounding the sphere c(t)
can be linearized to c(t) ≈ c0 + c1(t − t0). The question discussed in [3] is: given a series of absorption times
{ti}, i = 1, 2, ..., n measured during the interval ti ∈ (t0 − T/2, t0 + T/2), what is the minimum variance in the
estimate of c1 that a cell could possibly achieve? A natural tool for answering this question is the statistical framework
known as Maximum Likelihood. Given a set of data (the time series {ti}) and a generating model for those data
– in this case, that c(t) = c0 + c1(t − t0), and absorptions are Poisson with rate 〈I(t)〉 = 4πDac(t) – one seeks
values of the parameters of the generating model (c0 and c1) that maximize the probability, or “likelihood”, of the
data. Maximum likelihood estimates are optimal in the sense that, as the number of observations becomes large, the
variance of these estimators approaches a theoretical minimum variance for any unbiased estimator, which is given by
the Cramér-Rao theorem [4]. This lower bound can be used to establish a bound on the accuracy with which cells can
measure changes in concentration.

In the context considered in [3] and in our study, molecule absorptions are assumed to be independent Poisson
events. Let t = 0 be the time at which the pulse appears, and t = t0 be a reference time marking the midpoint of the
measurement interval (t0−T/2, t0+T/2). The lengths of the time intervals between molecule arrivals, σi = ti−ti−1
[5] obey

P(σi) = 〈I(ti)〉 exp

[
−
∫ ti

ti−1

〈I(s)〉ds

]
, (S1)

where σ1 is defined as t1 − (t0 − T/2) and the integral in Equation (S1) is taken from t0 − T/2 (the start of the
measurement interval) to t1 for σ1. The probability of observing the set {ti} is

P({ti}) = P({σi}) =
n∏

i=1

〈I(ti)〉e−
∫ t0+T/2

t0−T/2
〈I(t)〉dt

. (S2)

By solving ∂ log(P({ti}))/∂ĉ0 = 0 and ∂ log(P({ti}))/∂ĉ0 = 0, one can show that the values of ĉ0 and ĉ1 that
maximize Eq. (S2) are:

ĉ0 =
n

4πDaT
(S3)

and

ĉ1 = ĉ0

∑
i(ti − t0)∑
i(ti − t0)2

, (S4)
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where n is the number of molecules absorbed during the observation interval. Note that 〈n〉 ≈ 4πDac0T as the
measurement interval becomes long, and as n becomes large,

∑
i(ti − t0) ≈ 〈

∑
ti
(ti − t0)〉 = 4πDa

∫ t0+T/2

t0−T/2
[c0 +

c1(t−t0)](t−t0)dt = πDac1T
3/3 and

∑
ti
(ti−t0)2 ≈ 〈

∑
ti
(ti−t0)2〉 = 4πDa

∫ t0+T/2

t0−T/2
[c0+c1(t−t0)](t−t0)2dt =

πDac0T
3/3, indicating that maximum likelihood estimators, ĉ0 and ĉ1, are asymptotically unbiased, i.e.,

ĉ0 → c0 and ĉ1 → c1 for large n. (S5)

We derive Eq. (1) in the Main Text by calculating a lower bound on the variance of the ramp rate estimator, ĉ1. The
Cramér-Rao theorem states that the variance of ĉ1 is bounded by the relation [4]:

var(ĉ1) ≥ −E
[
∂2 log(P({ti}; c1))

∂c12

]−1
= E

[∑
ti

(ti − t0)2

[c0 + c1(ti − t0)]2

]−1
. (S6)

Employing the assumption that c0 � c1T , and using
∑

ti
[ti − t0]

2 ≈ πDac0T
3/3 as the number of absorptions

becomes large implies

var(ĉ1) &
c20∑

ti
[ti − t0]2

≈ 3c0
πDaT 3

, (S7)

which is the relation given in Eq. (1) of the Main Text.
Estimating the concentration slope in static and dynamic concentration fields. We are concerned with cells

that use their estimate of the ramp rate ĉ1 to estimate the spatial gradient in chemical concentration, which we refer
to as the concentration slope. We also assume that the concentration field C changes over time as a pulse spreads.
In this setting, the cell must estimate the concentration slope g along its path using some estimator ĝ that can be
computed from a series of observed absorption times. The concentration experienced by the cell can still be written
c(t) = c0 + c1(t − t0), but now c1 = gv + ∂C/∂t. If we begin by assuming ∂C/∂t = 0, the maximum likelihood
estimator for g follows from the estimator for c1:

ĝ = ĉ0

∑
i(ti − t0)

v
∑

i(ti − t0)2
. (S8)

In the limit of many molecule absorptions,
∑

i(ti − t0) ≈ πDavgT 3/3 and
∑

i(ti − t0)2 ≈ πDac0T
3/3 (using the

assumption that c0 � c1T ), which imply that ĝ approaches the true concentration slope g as the number of molecule
absorptions becomes large (i.e., ĝ is asymptotically unbiased).

When ∂C/∂t is not equal to zero and the cell is swimming at speed v > 0, the absorption time series {ti} does not
contain the information necessary to estimate both g and ∂C/∂t. This can be shown by combining Eq. (S4) and (S5):

ĉ1 =
n
∑

i(ti − t0)
4πDaT

∑
i(ti − t0)2

→ c1 = gv + ∂C/∂t. (S9)

Equation (S9) is clearly underdetermined; an infinite number of g and ∂C/∂t value pairs can satisfy Eq. (S9). Without
additional information, any estimator of the concentration slope g will be biased. For instance, a cell could implement
the maximum likelihood estimator ĝ defined above to estimate the concentration slope in a dynamic environment. For
∂C/∂t 6= 0, the sum

∑
i(ti − t0) ≈ πDa(gv + ∂C/∂t)T 3/3, which implies that

ĝ → g + (∂C/∂t)/v. (S10)

Equation (S10) illustrates two important points: the bias in the concentration slope estimate (second term on the r.h.s.
of Eq. (S10)) is reduced as swimming speed increases; and this bias does not depend on measurement time T . One
could propose alternative estimators for the concentration slope g that satisfy Eq. (S9), but these basic conclusions are
unchanged.
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Dynamics of the outer boundary
Derivation of the outer boundary, ro. To derive the time-scaling of the outer boundary ro, we consider a cell that is
traveling directly toward the origin of the pulse at speed v. We define ro as the largest radius, r that satisfies Eq. (4) in
the Main Text. To approximate this value, note that temporal changes in concentration are described by

∂C

∂t
=

[
r2

4Dt2
− N

2t

]
C, (S11)

for the concentration profile studied in the Main Text, which implies that near r =
√
2NDt, temporal changes in the

concentration field are small. We assume ro is in this region and therefore neglect contributions of ∂C/∂t to the ramp
rate measured by a swimming cell. This implies that the condition for the signal-to-noise ratio to rise above δ0 is
−v ∂C

∂r C
−1/2 = vrC1/2/(2Dt) ≥ δ. Solving for r gives:

r =
√
−4DtW (−16Dtd2), (S12)

where d = δ(4πDt)N/4(4
√
Mv)−1, andW (·) is the product log function. In general,M will be large so the argument

of the product log function will be negative and close to zero (because d is small). An approximation for the branch
of the product log function that corresponds to ro in this regime [6] is W (x) ≈ ln(−x)− ln(− ln(−x)), which yields
the approximation for ro given by Eq. (5) in the Main Text.

Derivation of the time when chemotaxis ceases, t∗. The signal-to-noise ratio takes its maximum value at r =√
4Dt. Near this radius the contribution of temporal changes in the chemical field to the cell’s perceived ramp rate

are small and, again, the signal-to-noise ratio is approximately proportional to −v ∂C
∂r C

−1/2. Solving for the time at
which the maximum signal-to-noise ratio falls below threshold yields the expression for t∗ given by Eq. (6) in the
Main Text.

Dynamics of the inner boundary.
The inner boundary ri is given implicitly by∣∣∣∣vg(r, t) + ∂C(r, t)

∂t

∣∣∣∣C(r, t)−1/2 − δ = 0, (S13)

with g = ∂C/∂r. Eq. (S13) has zero, one, or two positive roots. When this expression has no positive roots, cells
traveling down the concentration gradient experience a signal-to-noise ratio of the ramp rate estimator that is below
threshold δ0 everywhere. When this expression has one positive and one negative root, there is a maximum distance,
beyond which cells traveling down the concentration gradient typically fail to detect a signal that is resolvable above
noise, but any cell within this outer radius can typically resolve the ramp rate (Fig. 3 of the Main Text, early time).
When Eq. (S13) has two positive roots, there exists an inner boundary, ri > 0 within which, cells cannot resolve the
ramp rate. This latter case is shown in Fig. 2a (dashed blue curve) and Fig. 3 inset in the Main Text.
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