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1. PROOF OF THEOREM 3.6

Proof. The proof consists of the following four steps.

Step 1: We first establish the asymptotic results for the variable importance measure. Without

further specification, the proof of Step 1 is conditional on an internal node A with sample size

nA and number of non-muted variables equal to pA. We denote the internal node dataset by

DA = {(Xi, Yi), i ∈ A}. Let P be the probability measure of (X, Y ) and let P be the corresponding

empirical measure.

First, we observe that V IA(j) is bounded. By Assumption 3.1, f is Lipschitz continuous with

Lipschitz constant cf ,

V IA(j)

=
E[E[(f(X

(1)
i , ..., X̃

(j)
i , ..., X

(p)
i )− f(X

(1)
i , ..., X

(j)
i , ..., X

(p)
i ))2|X(j)

i ]|A]
σ2

≤
E[E[(cf · (bj − aj))

2|X(j)
i ]|A]

σ2
=
c2f · (bj − aj)

2

σ2
.

(1)

Hence V IA(j) is also bounded above by the interval length of X(j), i.e., (bj − aj), in A. It can be

further bounded above by
c2f
σ2

since (bj − aj) < 1 for any internal node A.

Now we show that V̂ IA(j) converges to V IA(j) at an exponential rate. For simplicity, assume

that the embedded model f̂∗A randomly selects half of DA to fit the model, denoted by DA1 , and

the variable importance is calculated using the other half of the data, denoted by DA2 . Note

that this is exactly (except for the proportion of each subset) what we do for each tree in a

standard random forests model. However, with the potential use of other models, this simplifies

the formulation. Further, since the j-th variable importance measure is calculated by randomly

permuting the values of X
(j)
i in DA2 , which we denote by X̃

(j)
i , we assume that this permutation

is done infinitely many times. Then, for the i-th observation in DA2 , the squared error after

permutation is E
X̃

(j)
i

(
f̂∗A(X

(1)
i , ..., X̃

(j)
i , ..., X

(p)
i )− Yi

)2
. Hence the j-th variable importance can be
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formulated as:

V̂ IA(j)

=

1
nA/2

∑
Xi∈DA2

EX̃(j)

(
f̂∗A(X

(1)
i , ..., X̃(j), ..., X

(p)
i )− Yi

)2
1

nA/2

∑
Xi∈DA2

EX̃(j)

(
f̂∗A(X

(1)
i , ..., X

(j)
i , ..., X

(p)
i )− Yi

)2 − 1

=

1
n

∑
Xi∈D EX̃(j)

(
f̂∗A(X

(1)
i , ..., X̃(j), ..., X

(p)
i )− Yi

)2
I[Xi∈A2]

1
n

∑
Xi∈D EX̃(j)

(
f̂∗A(X

(1)
i , ..., X

(j)
i , ..., X

(p)
i )− Yi

)2
I[Xi∈A2]

− 1,

(2)

where I[Xi ∈ A2] is the indicator function denoting whether Xi falls into the internal node A,

and is randomized with probability 1
2 to DA2 for calculating variable importance. Let the set

(X
(1)
i , ..., X

(j−1)
i , X

(j+1)
i ..., X

(p)
i ) be X

(−j)
i . Then the numerator of the first term of (2) can be

broken down into:

1

n

∑
Xi∈D

EX̃(j)

(
f̂∗A(X

(1)
i , ..., X̃(j), ..., X

(p)
i )− Yi

)2
I[Xi∈A2]

= Pn
(
EX̃(j)

(
f̂∗A(X

(−j), X̃(j))− Y
)2
I[X∈A2]

)
= (Pn − P)

(
EX̃(j)(f̂

∗
A(X

(−j), X̃(j))− Y )2I[X∈A2]

)
+P
(
EX̃(j)

(
f̂∗A(X

(−j), X̃(j))− fA(X
(−j), X̃(j))

)2
I[X∈A2]

)
+P
(
EX̃(j)

(
fA(X

(−j), X̃(j))− fA(X
(−j), X(j))

)2
I[X∈A2]

)
+P
(
EX̃(j)

(
fA(X

(−j), X(j))− Y
)2
I[X∈A2]

)
=: T̃1 + T̃2 + T̃3 + T̃4. (3)

Now we bound each of the four terms in Equation (3). We will first show the bound for T̃1

and then for T̃2, following the same idea. We use Theorem 8 in van de Geer and Lederer (2011) to

establish the bound for T̃1. The Theorem states that for any function g(X) that lives in a collection

of functions G, if the Bernstein condition

sup
g∈G

E|g|m ≤ m!

2
Km−2, m = 2, 3, ... (4)

is satisfied for some constant K ≥ 1, then
√
n(Pn − P)g has exponential tail.

By Assumption 3.4, f̂∗ has exponential tail. On the other hand, Y = f(X) + ϵ, and f(X) are

bounded, and hence Y also satisfies the moment condition by Assumption 3.5. Hence, we can find
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some constant K such that the following Bernstein condition is satisfied:

sup
f̂∗

E
∣∣∣f∗A(X(−j), X̃(j))− Y

∣∣∣m ≤ m!

2
Km−2, m = 2, 3, .... (5)

Furthermore, since f̂∗ has finite entropy integral by Assumption 3.4, we can use Theorem 8 in

van de Geer and Lederer (2011) and reorganize the terms to find a constant K∗
1 > 0 such that:

P

(
sup

∣∣∣√nT̃1∣∣∣ ≥ t

)
≤ e−t/K

∗
1 . (6)

For T̃2, we first write it into a conditional probability PA2 such that

T̃2 = PA2

(
EX̃(j)

(
f̂∗A(X

(−j), X̃(j))− fA(X
(−j), X̃(j))

)2)
P (A2)

= T̃ ∗
2P (A2). (7)

For T̃ ∗
2 in the above equation, noting Assumption 3.4 for the error bound of f∗A, and following

similar arguments as applied to T̃1, we have for some constant K∗
2 > 0:

P

(
sup

∣∣∣√nη(pA)
A T̃ ∗

2

∣∣∣ ≥ t

)
≤ e−t/K

∗
2 . (8)

For the other two terms, it is easy to see by Definition 2.1 that T̃3 = V IA(j)σ
2P (A2), and

T̃4 = σ2P (A2) by Assumption 3.5.

Note that the denominator of the first term in (2) can be decomposed into four terms: T1, T2,

T ∗
3 and T4, similar to (3) but with X

(j)
i in lieu of X̃

(j)
i . The first two terms can be bounded in the

same way as the above. The third term equals 0 since X̃
(j)
i is replaced by X

(j)
i . And the fourth

term T4 = σ2P (A2).

Hence, together with (6), (8) for the numerator, and the above arguments for the denominator,
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we can derive that

P
(∣∣∣V̂ IA(j)− V IA(j)

∣∣∣ > C
)

= P
(∣∣∣ T̃1 + T̃ ∗

2P (A2) + σ2P (A2)V IA(j) + σ2P (A2)

T1 + T ∗
2P (A2) + 0 + σ2P (A2)

− 1− V IA(j)
∣∣∣ > C

)
≤ P

(∣∣∣ T̃1
T1 + T ∗

2P (A2) + σ2P (A2)

∣∣∣ > C/3
)

+P
(∣∣∣ T̃ ∗

2P (A2)

T1 + T ∗
2P (A2) + σ2P (A2)

∣∣∣ > C/3
)

+P
(∣∣∣ σ2P (A2)(V IA(j) + 1)

T1 + T ∗
2P (A2) + σ2P (A2)

− 1− V IA(j)
∣∣∣ > C/3

)
= P

(∣∣∣ T̃1
T1 + T ∗

2P (A2) + σ2P (A2)

∣∣∣ > C/3
)

+P
(∣∣∣ T̃ ∗

2P (A2)

T1 + T ∗
2P (A2) + σ2P (A2)

∣∣∣ > C/3
)

+P
(∣∣∣(T1 + T ∗

2P (A2))(1 + V IA(j))

T1 + T ∗
2P (A2) + σ2P (A2)

∣∣∣ > C/3
)
. (9)

Noting that all the T terms are positive, and V IA(j) is also positive and bounded above, we have:

P
(∣∣∣V̂ IA(j)− V IA(j)

∣∣∣ > C
)

≤ P
(∣∣∣ T̃1
σ2P (A2)

∣∣∣ > C/3
)
+ P

(∣∣∣ T̃ ∗
2P (A2)

σ2P (A2)

∣∣∣ > C/3
)
+

P
(∣∣∣T1(1 + V IA(j))

σ2P (A2)

∣∣∣ > C/6
)
+ P

(∣∣∣T ∗
2P (A2)(1 + V IA(j))

σ2P (A2)

∣∣∣ > C/6
)

≤ e−C·P (A2)·n/3K1 + e−C·nη(pA)

A /3K2 + e−C·P (A2)·n/3K3 + e−C·nη(pA)

A /3K4

≤ e−C·nη(pA)

A /K5 .

(10)

Noting that this is the tail probability for V̂ IA(j) when pA variables are considered in the

embedded model, we can easily generalize it to the situation at an internal node where only p0

variables are considered. In this case, we replace η(p) by η(p0), yielding a faster convergence rate.

In the derivation, the constantK5 can possibly depend on pA, however, since pA < p, which is finite,

we can always choose a larger K5 such that the equation holds for all values of pA. Consequently,

K5 does not depend on the choice of internal node A.

Now, two situations can arise for V IA(j):
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Situation 1: X(j) is a noise variable. Since changing the value of X(j) will not change f(X),

f(X(1), ..., X̃(j), ..., X(p)) ≡ f(X(1), ..., X(j), ..., X(p)), and thus V IA(j) ≡ 0.

Situation 2: X(j) is a strong variable. According to Assumption 3.2, V IA(j) is bounded below

by ψ1(δ) · ψ2(bj − aj), where δ = min
i∈{S\j}

(bi − ai). We further note that since the internal node size

is nA, the interval length of any variable is at least nA
n even if all splits are made on that variable.

Hence both δ and bj − aj are larger than nA
n . Hence V IA(j) ≥ ψ1(

nA
n ) · ψ2(

nA
n ) for any strong

variable.

Hence, to sum up situations (1) and (2), we have

V IA(j)

 ≥ ψ1(
nA
n ) · ψ2(

nA
n ), if j ∈ S.

= 0, if j ∈ Sc.
(11)

Step 2: Now we prove a) of this Theorem. Let ĵA be the selected splitting variable at internal

node A, i.e., ĵA = argmax
j
V IA(j). Without loss of generality, we assume that at this internal node

A, the true variable importance measures are in the order V IA(1) ≥ V IA(2) ≥ · · · ≥ V IA(p1) >

V IA(p1 + 1) = · · · = V IA(p) = 0. Then the probability that the selected splitting variable ĵ∗A

belongs to the set of strong variables satisfies the following inequality:

P (ĵA ∈ S)

= 1− P (ĵA ∈ Sc)

= 1−
∑
i∈Sc

P (ĵA = i)

≥ 1−
∑
i∈Sc

P
(
V̂ IA(i) > V̂ IA(j), for all j ∈ S

)
≥ 1− p1

∑
i∈Sc

P (V̂ IA(i) > V̂ IA(p1)). (12)

Let ∆̂j = V̂ IA(j)− V IA(j). Using equation (10) and noting that V IA(i) = 0 for all i ∈ Sc, the
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above probability can be bounded below by

P (ĵA ∈ S)

≥ 1− p1
∑
i∈Sc

P
(
∆̂j + 0 > ∆̂p1 + V IA(p1)

)
≥ 1− p1

∑
i∈Sc

[
P
(
|∆̂p1 | >

V IA(p1)

2

)
+ P (∆̂j >

V IA(p1)

2
)

]
= 1− p1

∑
i∈Sc

4 · e−
V IA(p1)

2
·nη

A/K5

= 1− 4p1p2 · e−
V IA(p1)

2
·nη

A/K5 . (13)

Using Equation (11), we have, for any internal node A with sample size nA, and with pA

nonmuted variables,

P (ĵA ∈ S) ≥ 1− 4p1p2 · e−ψ1(
nA
n

)·ψ2(
nA
n

)·nη(pA)

A /(K5·2). (14)

Since p1, p2 and K5 are all constant, the proof for a) is concluded.

Step 3: We show b) using a similar structure as the proof of a). Note that at any internal

node A, the probability that the maximum true variable importance is larger than twice that of

the selected splitting variable is

P
(
max
j
V IA(j) > 2V IA

(
ĵA
))
.

By defining the variable with the true maximum variable importance at nodeA as jmA = argmax
j
V IA(j),

the above equation can be bounded by

P
(
V IA(j

m
A ) > 2V IA(ĵA)

)
≤ P

(
V IA(j

m
A ) > V IA(ĵA) + ψ1(

nA
n

) · ψ2(
nA
n

)
)

= P
(
V IA(j

m
A )− V̂ IA(j

m
A ) > V IA(ĵA)− V̂ IA(j

m
A ) + ψ1(

nA
n

) · ψ2(
nA
n

)
)

= P
(
V IA(j

m
A )− V̂ IA(j

m
A ) > V IA(ĵA)− V̂ IA(ĵA)

+V̂ IA(ĵA)− V̂ IA(j
m
A ) + ψ1(

nA
n

) · ψ2(
nA
n

)
)
.

Note that V̂ IA(ĵA) − V̂ IA(j
m
A ) ≥ 0 since ĵA is the selected variable. Adapting the notation of
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∆̂ used in Step 2, we now have

P
(
V IA(j

m
A ) > 2V IA

(
ĵA
))

≤ P
(
∆̂jmA

> ∆̂ĵA
+ 0 + ψ1(

nA
n

) · ψ2(
nA
n

)
)

≤ P
(
|∆̂jmA

| >
ψ1(

nA
n ) · ψ2(

nA
n )

2

)
+P
(
|∆̂ĵA

| >
ψ1(

nA
n ) · ψ2(

nA
n )

2

)
≤ 4e−ψ1(

nA
n

)·ψ2(
nA
n

)·nη(pA)

A /(K5·2). (15)

Thus the proof for b) is concluded.

Step 4: We now show c), that the protected set P0
A for the entire tree contains all strong

variables with probability close to 1, provided the number of protected variables p0 is greater than

p1. It is sufficient to show this property at the root node, where A = [0, 1]p, since the protected set

will only increase after a split. Note that when p0 > p1, if a strong variable is not in the protected

set, there must be at least one noise variable with larger V̂ I. Hence we have:

P (S ∈ P0
A)

≥ 1− P (∃j ∈ S and i ∈ Sc, s.t. V̂ IA(j) < V̂ IA(i))

≥ 1−
∑

j∈S,i∈Sc

P (V̂ IA(j) < V̂ IA(i))

≥ 1− p1p2P (V̂ IA(p1) < V̂ IA(p1 + 1)).

By similar arguments to those used in Steps 2), and noting that nA = n at the root node, we can

bound the above probability by:

P (S ∈ P0
A)

≥ 1− p1p2e
V IA(p1)·nη(p)/(K5·2).

(16)

Since at the root node, all the variable importance measures, including V IA(p1), are fixed constants,

the proof for c) is concluded.
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2. LEMMA 2.1

Lemma 2.1. Let AnT denote the set of terminal hypercubes. Under the same assumptions of

Theorem 3.7, it holds that

max
A∈AnT ,j∈S

V IA(j) = Op(n
−2rγlogq(1−q)/(rp1)p1+1

),

where r is a constant satisfying r > 1 and 2(1− q)2r/q2 ≤ 1, p1 is the number of strong variables,

and q is the lower quantile for the random splitting point generation.

Proof. For any terminal hypercube A ∈ AnT , let A1 → A2 → . . . → AN = A be the constructed

chain of the nodes leading to A, where Ak+1 is the daughter node of Ak. Since at each node,

the splitting point is chosen uniformly between the 100q and 100(1 − q) quantiles of the current

range of the splitting variable for some q ∈ (0, 12), and since the terminal node is the last node

having ≥ nγ observations, it is easy to see that −γ logq(n) ≤ N ≤ −γ log(1−q)(n). Let jk =

argmaxj∈S V̂ IAk
(j) be the index of the variable selected for splitting at node Ak and, moreover,

define mj =
∑N

k=1 I(jk = j), the number of times the jth variable is used for splitting. Let

Nj = max{k :, k = 1, ..., N, jk = j}, the index of the last node split with the jth variable.

Before presenting the main proof, we state two simple properties:

Property 1. For j ∈ S, V IANj
(j) ≤ c1(1− q)mj . This is because after node ANj , the interval of the

jth variable has been split mj times so its length is at most (1 − q)mj−1. Therefore, according to

the proof of Theorem 3.6, V IANj
(j) ≤ c1(1− q)2mj .

Property 2. For k = 1, ..., N − 1 and any j ∈ S, VAk+1
(j) ≤ 2V IAk

(jk)/q
2. That is, the importance

of any variable in the daughter node is no larger than the importance of the selected variable at the

current node by a factor of 2/q2. This follows from Theorem 3.6 (b): 2V IAk
(jk) ≥ maxj V IAk

(j).

On other hand, for any j ∈ S, since Ak+1 ⊂ Ak and |Ak+1| ≥ |Ak|/q, we have

V IAk
(j) =

E

[(
f(X(−j), X(j))− f(X(−j), X̃(j))

)2
I(X ∈ Ak, X̃ ∈ Ak)

]
σ2P (X ∈ Ak)

≥
E

[(
f(X(−j), X(j))− f(X(−j), X̃(j))

)2
I(X ∈ Ak+1, X̃ ∈ Ak+1)

]
/q

σ2P (X ∈ Ak+1)q

= V IAk+1
(j)/q2.
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Thus, VAk+1
(j) ≤ V IAk

(j)/q2 ≤ 2V IAk
(jk)/q

2. With these two properties, we now proceed to

prove the lemma. First, we define the following sequence:

N >
N

(rp1)1
> · · · > N

(rp1)p1
> 0, (17)

where r is a constant satisfying r > 1 and 2(1 − q)2r/q2 = c ≤ 1. Since 0 < q < 1/2, r can

always be properly chosen. Correspondingly, we obtain intervals Wk = [N/(rp1)
k, N/(rp1)

k−1) for

k = 1, ..., p1 and Wp1+1 = [0, N/(rp1)
p1). Recall the definition of mj , the number of times the

jth variable is selected for splitting. Since
∑p1

k=1mj = N , there must be at least one j such that

mj ≥ N/(rp1) and mj ∈W1. Furthermore, since there are (p1+1) intervals, there exists an integer

p1 + 1 ≥ k0 ≥ 2 such that mj /∈Wk0 for any j = 1, ..., p1. Hence, we can define two sets:

S1 = {j : mj ≥ N/(rp1)
k0−1}

and

S2 = {j : mj < N/(rp1)
k0},

so that S1 ̸= ∅ and S1 ∪ S2 = {1, ..., p1}.

Let j∗ be the variable in S1 which is split last among all the variables in S1, and let N∗ be the

node index where this variable is split last. In other words, the variables selected in the nodes Ak

for k > N∗ are all from S2. Then using Property 1, we have V IAN∗ (j
∗) ≤ c1(1− q)2mj∗ . Using the

fact that j∗ ∈ S1, we obtain

V IAN∗ (j
∗) ≤ c2(1− q)2N/(rp1)

k0−1
.

Since all splitting variables after node AN∗ are from S2, and the number of distinct variables is

at most (p1 − 1), and the number of possible splits after AN∗ = N − N∗ is no larger than (p1 −

1)N/(rp1)
k0 , we can build the relationship between V IAN∗ (j

∗) and all other variable importance

measures at the terminal node A. Hence we conclude: (a) if N∗ = N , then

V IA(j) = V IAN
(j) ≤ 2V IAN

(jN ) = 2V IAN∗ (j
∗)

≤ 2c1(1− q)2N/(rp1)
k0−1

2c1 ≤ (1− q)2N/(rp1)
p1
.

(b) if N∗ < N , then according to Property 2,

V IA(j) = V IAN
(j) ≤ (

2

q2
)N−N∗

V IA∗
N
(j∗) ≤ (

2

q2
)(p1−1)N/(rp1)k0V IA∗

N
(j∗).
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Thus,

V IA(j) ≤ 2c3
(1− q)2q2

(
2(1− q)2r

q2

)(p1−1)N/(rp1)k0

(1− q)2rN/(rp1)
k0

≤ c4(1− q)2rN/(rp1)
k0

≤ c4(1− q)2rN/(rp1)
p1+1

, (18)

where c4 is a constant depending only on p1 and q, and where we used the fact that 2(1−q)2r/q2 < 1.

Finally, since −γ logq(n) ≤ N ≤ −γ log(1−q)(n), we obtain

max
j∈S

V IA(j) ≤ c5(1− q)−2rγ logq(n)/(rp1)
p1+1

= c5n
−2rγlogq(1−q)/(rp1)p1+1

,

where c5 is a constant depending only on p1, q and r. Thus the lemma holds.

3. TOY EXAMPLE FOR THEOREM 3.6

This toy example serves as a numerical demonstration of Theorem 3.6. We show that as the

sample size increases, the probability of using a strong (or the strongest) variable as the splitting

rule approaches 1. In other words, the variable importance from an embedded model should behave

well as the sample size increase. However, this probability should also depend on the size of p, and

the complexity of the true model structure. Following the settings of our simulation study in section

4.2, we consider two scenarios, Scenario 1: E(Y ) = 0.5X(50) + 0.5X(100) + X(150), and Scenario

2: E(Y ) = 2X(50)X(100). We consider n = 25, 50, 100, 250, 500, 1000, and p = 500, 1000, 2000. For

each setting, we fit an embedded model to the generated data and record whether X(150) has the

highest V̂ I in Scenario 1, and whether X(50) or X(100) has the highest V̂ I in Scenario 2. This is

repeated 500 times and the probabilities are summarized in the following plot.

Since the monotone effects of Scenario 1 are easier to detect by trees, the higher selection

probability of Scenario 1 is expected. When the sample size is 250 or larger, the strongest variable

X(150) is almost always selected. For a checkerboard model, however, we need to increase the

sample size to 1000 to almost guarantee a “correct” selection. For both scenarios, there is a large

randomness when n = 25. This indicates that when approaching terminal nodes, the splitting

variable selection process can behave like a random pick.

11



Figure 1: Probability of selecting the most important variable as the splitting rule

4. ADDITIONAL SIMULATION RESULTS

Table 1: Classification/prediction error (SD) of RLT under α = 0.01, p = 200

Linear

Muting combination Scenario 1 Scenario 2 Scenario 3 Scenario 4

1 14.8% ( 4.0% ) 4.09 ( 1.00 ) 5.43 ( 0.75 ) 4.36 ( 0.52 )

No 2 16.9% ( 4.2% ) 5.35 ( 1.27 ) 5.74 ( 0.61 ) 2.63 ( 0.39 )

5 22.4% ( 3.2% ) 7.82 ( 1.22 ) 5.94 ( 0.62 ) 2.81 ( 0.44 )

1 11.8% ( 3.4% ) 3.20 ( 0.84 ) 4.74 ( 0.74 ) 3.27 ( 0.39 )

Moderate 2 12.5% ( 3.6% ) 3.72 ( 1.02 ) 4.85 ( 0.72 ) 1.99 ( 0.29 )

5 18.1% ( 3.4% ) 6.00 ( 1.24 ) 4.94 ( 0.72 ) 2.08 ( 0.32 )

1 10.3% ( 3.2% ) 2.79 ( 0.71 ) 4.87 ( 0.81 ) 3.23 ( 0.39 )

Aggressive 2 10.0% ( 3.4% ) 2.76 ( 0.77 ) 4.90 ( 0.79 ) 1.75 ( 0.23 )

5 14.3% ( 3.6% ) 4.59 ( 1.10 ) 4.83 ( 0.78 ) 1.71 ( 0.24 )

Note that α does not affect the performance of 1 linear combination under any circumstances.

5. DATA ANALYSIS RESULTS
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Table 2: Classification/prediction error (SD) of RLT under α = 0.01, p = 500

Linear

Muting combination Scenario 1 Scenario 2 Scenario 3 Scenario 4

1 17.8% ( 4.0% ) 4.93 ( 1.20 ) 6.96 ( 0.98 ) 4.89 ( 0.62 )

No 2 20.7% ( 4.1% ) 6.48 ( 1.35 ) 7.10 ( 0.86 ) 2.97 ( 0.42 )

5 24.8% ( 3.2% ) 8.80 ( 1.10 ) 7.27 ( 0.82 ) 3.20 ( 0.47 )

1 14.9% ( 3.9% ) 3.88 ( 1.11 ) 6.43 ( 1.08 ) 3.69 ( 0.47 )

Moderate 2 16.9% ( 4.2% ) 4.83 ( 1.33 ) 6.49 ( 0.98 ) 2.30 ( 0.32 )

5 21.7% ( 3.4% ) 7.30 ( 1.23 ) 6.59 ( 0.95 ) 2.45 ( 0.35 )

1 12.8% ( 3.8% ) 3.39 ( 1.04 ) 6.13 ( 1.09 ) 3.35 ( 0.44 )

Aggressive 2 13.6% ( 4.2% ) 3.62 ( 1.23 ) 6.11 ( 1.05 ) 1.90 ( 0.24 )

5 17.8% ( 3.8% ) 6.03 ( 1.26 ) 6.18 ( 1.05 ) 1.93 ( 0.25 )

Note that α does not affect the performance of 1 linear combination under any circumstances.

Table 3: Classification/prediction error (SD) of RLT under α = 0.01, p = 1000

Linear

Muting combination Scenario 1 Scenario 2 Scenario 3 Scenario 4

1 18.8% ( 4.4% ) 5.64 ( 1.51 ) 7.81 ( 1.07 ) 5.08 ( 0.60 )

No 2 21.4% ( 3.8% ) 7.37 ( 1.53 ) 7.83 ( 0.97 ) 3.07 ( 0.45 )

5 25.4% ( 2.5% ) 9.29 ( 1.09 ) 8.03 ( 0.83 ) 3.26 ( 0.48 )

1 16.0% ( 5.0% ) 4.50 ( 1.47 ) 7.48 ( 1.26 ) 3.81 ( 0.45 )

Moderate 2 18.1% ( 4.7% ) 5.81 ( 1.63 ) 7.51 ( 1.06 ) 2.40 ( 0.38 )

5 22.9% ( 3.1% ) 8.15 ( 1.30 ) 7.62 ( 0.99 ) 2.54 ( 0.40 )

1 13.7% ( 4.9% ) 4.01 ( 1.38 ) 7.20 ( 1.22 ) 3.36 ( 0.42 )

Aggressive 2 14.7% ( 5.1% ) 4.49 ( 1.52 ) 7.08 ( 1.14 ) 1.92 ( 0.28 )

5 19.2% ( 3.9% ) 6.98 ( 1.45 ) 7.18 ( 1.15 ) 1.99 ( 0.33 )

Note that α does not affect the performance of 1 linear combination under any circumstances.
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6. TUNING PARAMETERS

In the following table, we summarize the tuning parameters that are implemented in the current

version of the “RLT” package (as of date Feb 9, 2015). The code is available at https://sites.

google.com/site/teazrq/software. Based on our experiments in both simulation and real data

analysis, we found that nmin, pd and k significantly affect the performance. The default tunings

are nmin = n1/3, pd = 80%, and k = 2, and it is strongly encouraged to tune pd and k. The package

also incorporates tunings for the embedded tree model. The default tunings in the embedded model

are ntrees embed = 100 (number of trees), resample prob embed = 85% (bootstrap sample rate),

mtry embed = 2/3 · |P \ Pd
A| (number of splitting variables tested), and nspliteach embed = 1

(number of random splitting points). However, we did not find significant impact for tuning the

embedded model, since they tend to provide stable ranking of the variables in our analysis.

Table 5: Default/suggested tuning parameters in “RLT” package

Parameter notation in paper value(s) Description

ntrees M 100 number of trees

resample prob — 100% bootstrap ratio for fitting each tree

nmin nmin n1/3 minimum number of observations in a terminal node

nspliteach — 1 number of random splitting point

muting percent pd 0, 50%, 80% muting rate

combsplit k 1 to 5 nonzero components in linear combination split

combsplit th α 0.25 threshold in a linear combination

protectV ar p0 log(p) number of protected variables
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