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1. Detailed methods for seasonal outlook presented as Figure 5b. 
 
The SST forecast used in the beta version of the seasonal outlook presented as Figure 5b is the 9-
month daily temperature forecast for the sea surface layer (top 10 meters) from the NOAA 
National Center for Environmental Prediction’s (NCEP) Climate Forecast System Version 2 
(CFSv2) model (Saha et al. 2014; CFSv2 website: http://cfs.ncep.noaa.gov). CFSv2 became 
operational in March 2011. CFSv2 runs four times every day at 0000, 0600, 1200, and 1800 
UTC producing forecast for each future day up to 9 months into the future. 
 
CFSv2 is a fully coupled ocean–land–atmosphere dynamical seasonal prediction system. For the 
study area, CFSv2 has both zonal and meridional resolutions of 0.5°. The ocean has 40 vertical 
layers in the model with 27 layers in the upper 400 m, and the bottom depth is around 4.5 km. 
The vertical resolution is 10 m from the surface to 240-m depth. 
 
For this study, nine-month daily SST forecasts from each of the CFSv2 nine-month model runs 
that occurred from June 22 through 28 (Monday-Sunday) 2015 were examined. For each data 
grid, we determined whether the predicted sea surface temperatures reach or exceed the surface 
temperatures required for modeled bottom temperatures to be >12 °C at the grid (see Figure S1) 
for at least seven consecutive days in September, 2015. Collecting the duration predictions for 
September 2015 from all four model runs per day over the 7-day period of June 22-28 produced 
a set of 28 runs (i.e., 28 ensemble members). We then generated a probabilistic forecast for each 
grid by calculating the percentage of the 28 runs that predicted the occurrence of bottom 
temperature >12 °C for all seven days. 
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1. Table S1. Host-pathogen systems identified as potential candidates for developing 
temperature-based surveillance tools. For these systems, temperature is strongly suspected as 
having a role in the disease etiology but the strength and nature of the role is not well 
understood. This list shows the breadth of host-pathogen systems that may eventually be good 
candidates for surveillance tools but is not expected to be exhaustive.  
 

Hosts Species 

Causative 
agent or 
disease name Region References 

     Sponges     

Vase sponge Ircinia spp. Vibrio spp. Mediterranean Sea 
Maldonado et al. (2010); Stabili 
et al. (2012) 

Sponges 

Spongia spp., 
Hippospongia 
spp. 

Microbial 
consortium Mediterranean Sea Gaino et al. (1992) 

     Corals      

Sea fans Gorgonia 
Aspergillus 
sydowii Caribbean Sea Alker et al. (2001)  

Sea fans Gorgonia mortality Caribbean Sea Cerrano et al. (2000)  

     Molluscs     

Pacific oyster Crassostrea gigas  
Oyster herpes 
virus W Europe, W USA 

Le Deuff et al. (1996); Burge et 
al. (2007)   

European oyster Ostrea edulis 
Bonamia 
ostreae Western Europe 

Van Banning (1991); Engelsma 
et al. (2010)    

European oyster Ostrea edulis 
Marteilia 
refringens Western Europe 

Balouet et al. (1979); Alderman 
(1979); Audemard et al. (2004)  

Abalone Haliotis spp. 
Xenohaliotis 
haliotidis Western USA 

Friedman et al.  (1997); Braid et 
al. (2005)      

     Crustaceans     

Shrimp Penaeid shrimp 
White Spot 
Syndrome  Global 

Rahman et al. (2006); Rahman et 
al. (2007)   

Shrimp Penaeid shrimp IHHNV Global Montgomery-Brock et al. (2007) 

Blue crab 
Callinectes 
sapidus 

Hematodinium 
perezi Mid-Atlantic USA 

Messick et al. (1999), Messick & 
Shields (2000) 

Spiny lobster Panulirus argus PaV1 Caribbean Sea 
Behringer et al. (2008); 
Behringer et al. (2012)    

     Echinoderms     

Sea urchin 
Str. 
droebachensis Paramoeba  Northeast Canada 

Scheibling & Hennigar (1997); 
Buchwald et al. (2015)  

Sea stars 
Sea stars - 22 
species 

Sea Star 
Wasting 
Disease 

E and W USA and 
Canada 

Eisenlord et al. (this issue); 
Hewson et al. (2014)  

     Vertebrates     

Salmon Salmonids IHNV 

Pacific and Atlantic- 
coastal Japan, W  
and E US, W 
Canada, Europe Garver et al. (2013)  
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4. Table S2. List of CMIP5 climate models forced with RCP8.5 to produce the long-term 
projections presented as Figure 5c.  
 

     Model name       Model name       Model name  
CCSM4             MIROC5               CMCC-CMS 
IPSL-CM5A-LR           GFDL-CM3            EC-EARTH 
BCC-CSM1.1             CNRM-CM5           FIO-ESM 
MRI-CGCM3             NorESM1-M          HadGEM2-AO 
IPSL-CM5A-MR         ACCESS1-0  INM-CM4 
CSIRO-Mk3.6.0           ACCESS1-3 IPSL-CM5B-LR 
GFDL-ESM2G            BCC-CSM1.1(m) MPI-ESM-LR 
GISS-E2-R               CESM1-BGC MPI-ESM-MR 
HadGEM2-CC             CESM1-CAM5 NorESM1-ME 
GFDL-ESM2M            CESM1-ACCM  
HadGEM2-ES              CMCC-CESM  
CanESM2               CMCC-CM   

 
 
  
 

 
 
3. Figure S1. Required surface temperatures for modeled bottom temperatures of 12 °C. 
Relationships between surface and bottom temperatures were derived from a linear regression 
relating remotely sensed SST (NOAA Pathfinder v5.2) to World Oceans Analysis data for July-
August, 2012 (see methods in paper).  
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5. Figure S2. Linear trend in sea surface temperatures (SST) averaged across the spatial domain 
shown in Figures 4 and 5 for remotely sensed SST (blue, NOAA Pathfinder v5.2) and the CMIP5 
climate model ensemble used for the long-term projections (red). We state in the paper that the 
long-term projections are likely conservative because they are based on rates of change in SST 
for the next 20 years that are less than what was documented (on average) these last 30 years. 
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