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1 Introduction

In this supplementary material, we review the Islands with Local Regulation (ILR) popula-
tion structure that we introduced in [3], and then extend the results of that paper in several
ways. We will not repeat the motivation for the population structure, which is explained
in the introduction of [3] and further elaborated in the conclusion section of that paper.
But for the reader’s benefit, we include in the next two sections the basic definitions and
background ideas needed to make this supplement mathematically self-contained. These
two sections follow closely the corresponding ones in [3]. In the remaining sections of this
supplement we then present new results on the evolution of an inherited behavior in an
ILR setting. The most important extension of the results from [3] are those in Section 4,
where we analyze the regime in which migration and group size regulation (quatified by
group rigidity, as defined in Section 2) are comparable forces. In Section 5 we make explicit
a remark in the conclusion section of [3] on the effect of having both, local and global reg-
ulation of the population size. For this purpose we analyze a population structure that we
call “Islands with Local and Global Regulation” (ILGR), which includes ILR as a special
case. In that section, we will also discuss what are the minimal conditions for a weak
selection analysis to be valid. In Section 6 we explain how our conclusions about ILGR can
be refrased in terms of regression coefficients, and how this can be used to test the theory
against computer simulations. In Section 7 we apply the results of the previous sections to
iterated games with cooperation persisting contingent on the presence of a threshold num-
ber of cooperators in the group. We complement the analysis of these games provided in
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the paper, which is based there on an approximation, by producing exact solutions in two
important cases. We them use these exact solutions to discuss when the approximations
provided in the paper are good.

2 Islands with local regulation

First we introduce the population structure in the absence of selection. This population
structure is similar to Wright’s island model, but group size is not fixed and instead is
allowed to vary around a typical value n0. The population is split into g groups. Generations
are non-overlaping and reproduction is asexual. In the beginning of a new generation
cycle, groups contain only adult individuals. The size of a group is the number n of these
individuals. In the beginning of a cycle, adults produce offspring that remain in the group
until the end of the cycle when they reach adulthood, if they survive. Each adult produces
a random, statistically independent, number of adult offspring, with a distribution that
depends on the number of adult individuals in its group. When group size is n, the mean
of this individual adult offspring distribution is h(s), where s = n/n0 is the scaled group
size. This implies that the scaled expected number of adult offspring produced by the
group is nh(s)/n0 = sh(s). We assume that h(1) = 1, h(s) has a continuous derivative
h′(s) < 0, and sh(s) < 1, when s < 1 (this last condition implies h′(1) ≥ −1.) Thus h(s)
captures the idea that increasing group size decreases fitness. At the end of the cycle the
adults present in the beginning die, while each adult born in that cycle either migrates to
a randomly chosen group with probability m, or otherwise stays in its group of birth.

We assume that g is large (idealized by taking g → ∞). This implies that migration
is long range and that averages across groups or individuals are well approximated by
expected values for a randomly chosen focal group or individual. We also suppose, unless
when stated otherwise, that n0 is large. This implies that fluctuations in size across groups
can be neglected. In the absence of migration, the scaled group size behaves then as a
discrete time dynamical system, with s being mapped to sh(s) in each iteration. The
assumptions about h(s) imply that if initially s < 1, then s increases towards s0 = 1. If
initially s > 1, then s decreases towards s0 = 1, or decreases towards a value smaller than
1 and then increases towards s0 = 1. The speed at which this happens depends on the
derivative dsh(s)

ds
, at s = 1. Standard computations [2] show that the relaxation time is

of order 1/λ, where λ = −h′(1) will be called “the rigidity parameter”, and will play a
major role in this paper. The assumptions on h(s) imply that 0 < λ ≤ 1. A small value of
λ indicates a very elastic group environment, and a large value a very rigid environment.
(The assumptions that we are making on h(s) can be somewhat relaxed, but attraction
to the equilibrium at s = 1 could occur then through damped oscilations, rather than
monotonically. We are focusing on the simpler monotonic picture for simplicity. See [2] for
a detailed analysis of the dynamical system that maps s to sh(s), and their Table 2, for a
list of forms that h(s) has taken in the literature. Note also that a very large value of λ
would make the fixed point s = 1 unstable, therefore one cannot hope to produce a limit
of infinite rigidity, i.e., fixed group size, by letting λ→∞.)
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Groups are also pulled towards a common size by migration. Since migration is assumed
to occur at a fixed rate, larger groups will produce more migrants than smaller ones, tending
to equalize group size in a time of order 1/m.

The combined effects of rigidity and migration, will produce an equilibrium, in which
each group has size close to n0. The number of migrants produced by a focal group in
a cycle will then be close to a binomial with n0 attempts and probability m of success.
The number of migrants that the same group receives in a cycle is well approximated by a
Poisson distribution with mean n0m, because there are gn0m migrants, each one migrates
to the focal group with probability 1/g, and g is large. The net flux of migrants into
the focal group is hence a random variable with mean 0, and variance of order O(n0m).
Therefore, this net flux produces a change in s of the order of

√
n0m/n0 =

√
m/n0 << 1.

To see the similar role that λ and m have in equilibrating group sizes, we compute next
the linearized form of the evolution of the size of one focal group. Suppose that at an
arbitrary time, a group has scaled size s that may differ but only slightly from 1, in the
sense that |s − 1| << 1. Our goal is to compute the expected size s′ of the group, one
generation later. Since s is close to 1, so should also be s′ and we want to compute the
difference s′ − 1 to first order in s − 1. Including migration after reproduction out of the
group and into the group, we have s′ = sh(s)(1 −m) + m. Since d(sh(s))/ds = 1 − λ, at
s = 1, we obtain, s′ = (1 + (1− λ)(s− 1) +O(s− 1)2)(1−m) +m, which yields up to an
error of order (s− 1)2, the linearized evolution of the disturbances from equilibrium:

s′ − 1 = (s− 1)(1− λ)(1−m). (1)

Note that λ and m play exactly the same role here.
Selection is introduced by assuming that each individual is of type A or N (typically

representing cooperators and non-cooperators), and that the type is inherited by the off-
spring without mutation. The expected number of adult offspring of an individual of type
∗ (representing A or N), in a group with kA individuals of type A and kN individuals of

type N will be supposed to be w∗~k = (1 + δv∗~k)h(s), where ~k = (kA, kN), s = n/n0, with
n = kA + kN , the parameter δ ≥ 0 measures the strength of selection, and the quantities
v∗~k are in principle arbitrary but assumed to be bounded in absolute value by some vmax.
(In order for δ to properly account for the strength of selection, we suppose, with no loss of
generality, that, until stated otherwise, the order of magnitude of vmax is that of 1. This
assumption will be lifted in Section 5, and for this reason will not be needed in Section 6
and in the paper). We assume that when kA = 0, we have vN~k = 0, so that in case all indi-
viduals are of type N, the model behaves as the neutral one. When δ = 0, we also recover
the neutral model, and the types A and N are then neutral markers. Selection operates on
a time scale of order 1/δ. When δ > 0 is small enough that this time scale is longer than
the other relevant ones, namely 1/λ and 1/m, selection is weak. In this case it is natural to
refer to the quantities v∗~k as “marginal fitness functions”. (One could argue that this name
should be given to v∗~kh(n/n0), but when selection is weak, we will see that in the relevant
situations, h(n/n0) = 1 + O(δ), so that the difference is negligeable.) We will denote by

v̄~k =
kAv

A
~k

+kNv
N
~k

kA+kN
the average marginal fitness function in a group with composition ~k. In
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case the interaction among group members is well represented by a linear public goods
game, we have vA~k = −C + B(kA − 1)/(n − 1), vN~k = BkA/(n − 1), where 0 < C < B
are the usual cost and benefit parameters. When n is large, it is natural to assume that
v∗~k = ṽ∗x + O(1/n), with x = kA/n, n = kA + kB, for some piecewise continuous function

ṽ∗x, 0 ≤ x ≤ 1. For instance, for the linear public goods game we have ṽAx = −C + Bx,
ṽNx = Bx. In an abuse of notation we will drop the tilde from ṽ∗x and will also write
v̄x = xvAx + (1− x)vNx . The fitness function now reads

w∗(s, x) = h(s) (1 + δv∗x). (2)

3 Weak selection and quasi-equilibria

We will always suppose that selection is weak. For the moment we will assume that
selection is weak in a “worst scenario sense”, by assuming δ << m and δ << λ. This is a
worst scenario sense in that it makes δv∗x << m,λ, in all circumstances. This will simplify
the analysis, but in Section 5 we will explain that actually weak selection requires a less
stringent assumption for our purposes.

Our assumption above implies that for each frequency p of types A, groups will reach
a quasi-equilibrium in a time much shorter than 1/δ and this lasts for a period of time of
order 1/δ, before changes in p become relevant.

We can think of the quasi-equilibrium with frequency p of types A as a small perturba-
tion from what we would observe if we had δ = 0. With δ = 0, we would have the neutral
equilibrium described in the previous section. The fraction of type A individuals in the
population would be p, which would vary by drift only in a time scale of order g2, assumed
much larger than all the relevant time scales, including 1/δ. Selection with a small δ > 0,
perturbs this picture, and leads to changes in the values of p and s in a time scale of order
1/δ. The direction in which p varies will be our main concern below. But before we can
address this question, we note that the effects of weak selection on the value of s will be
small, in the sense that at any time and for any value of p we will have s = sp = 1+O(δ/λ).
This fact is a consequence of the fact that fitnesses are always between the two values given
by (1 ± δvmax)h(s). Therefore they are larger than 1, when s is below smin that solves
(1− δvmax)h(smin) = 1. And they are smaller than 1, when s is above smax that solves
(1 + δvmax)h(smax) = 1. Solving each one of these two equations, with the notation sm
for smin, or smax, gives h(sm) = 1 +O(δ). Since h(s) is continuously differentiable, with
h(1) = 1, h′(1) = −λ, we have h(s) = 1−λ(s−1)+o(s−1) and hence sm = 1+O(δ/λ). To
complete the argument, observe now that sp must be constrained to be inside the interval
[smin, smax], since it would be pushed back up if becoming smaller than smin and back
down if becoming larger than smax.

The quasi-equilibrium with a given value of p can now be described as follows, thanks to
a well known result by S. Wright [5] on the distribution of alleles in the infinite island model.
Groups have size close to n0, and the distribution of the fraction x of types A over these
groups is therefore well approximated by that of an infinite islands model with this group
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size, namely a beta distribution with parameters lp and lq, where l = 2mene, the effective
migration rate (for non-overlaping generations) is me = m(1 − m/2)/(1 − m)2 (which is
close to m when m << 1), and the effective population size is ne = n0/σ

2, where σ2 is the
variance in the number of adult offspring that each individual produces in a life cycle (see
[1], pp. 105,6, but be aware that his N relates to our n0 as N = 2n0). For instance, when
the adult offpring distribution is Poisson, we have ne = n0. The parameter l is related to
the relatedness R between individuals in the same group through the expression R = 1

1+l
,

that allows one to obtain estimates of l from empirical estimates of R. For this purpose

we should equate R with Fst = Var(x)
pq

, so that l = 1
Fst
− 1. This is so because a beta

distribution with parameters lp and lq has mean p and variance pq
1+l

, implying that the

empirical Fst should be 1
1+l

.
Since we will focus on a situation in which s = n/n0 is typically close to 1, the main

way in which the function h(s) is relevant is through the value of the rigidity parameter
λ = −h′(1). Note that the larger λ, the stronger is the effect of intra-group competition in
decreasing fitness.

4 ILR when m and λ are comparable

In [3] we analyzed cases in which either λ << m (“Hamilton regime”), or m << λ (called
“Taylor regime” there, and now called “crowded regime”). Here we provide a more elab-
orate analysis, which does not depend on the relation between λ and m. In this way we
address the issue left open in [3], of the case in which m and λ are comparable, and also
recover the results of [3].

Our goal is to compute the change in p over one generation, ∆p, when the population
is in one of the quasi-equilibria. For this we will use the well known formula

∆p = pq
WA −WN

W̄
, (3)

where W ∗ is the average number of adult offspring of individuals of type ∗, and W̄ is the
average number of adult offspring of all the individuals in the population.

To compute W ∗, one can select a focal individual at random from the population, and
compute its expected number of adult offspring, conditioned on its type being ∗. We will
denote by IE∗p the expectation conditioned on the focal being of type ∗. Referring to (2),
our task is, therefore, to compute W ∗ = IE∗p(h(s)(1 + δv∗(x))). Since s only differs from 1
by amounts of order δ and h(1) = 1, we have, up to an error of order δ2, h(s)(1 + δv∗x) =
h(s) + δv∗x and hence

W ∗ = IE∗p(h(s)) + δ IE∗p(v
∗
x). (4)

First we address the second term. The expectation IE∗p(v
∗
x) can be made more explicit,

by using the beta distribution described in the previous section. We will use the notation
beta(x|α, β) = Γ(α+β)

Γ(α)Γ(β)
xα−1(1 − x)β−1, to denote the probability density of a beta distri-

bution with parameters α and β. The only special care that needs to be taken is that
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conditioning on the type of the focal modifies the allele distribution in its group. For in-
stance, the information that the focal is type A indicates that there are more types A in
the group than a randomly selected group would have (sampling bias). This can be easily
taken care of, using Bayes’ formula. Since given that a group has a fraction x of types A
yields probability x that an individual taken at random from this group will be type A,
we obtain an extra factor x in the density, when conditioning on the focal being type A.
Normalizing the distribution, gives a beta with parameters lp + 1 and lq. Analogously,
conditioning on the focal being type N, yields a beta with parameters lp and lq + 1. We
can now write

IEA
p (vAx ) =

∫ 1

0

beta(x|lp+ 1, lq) vAx dx, IEN
p (vNx ) =

∫ 1

0

beta(x|lp, lq + 1) vNx dx. (5)

When one can neglect the first term in (4), one obtain from (3) and (5),

∆p = δpq

(∫ 1

0

beta(x|lp+ 1, lq) vAx dx−
∫ 1

0

beta(x|lp, lq + 1) vNx dx

)
+ o(δ). (6)

In [3] we showed that this is the case when λ << m, and referred to this regime as Hamilton
regime.

In the case of the linear public goods game, vAx = −c+ bx, vNx = bx, we can use the fact
that the mean of a beta distribution with parameters α and β is α/(α+β), to compute the
beta integrals and see that, regardless of the value of p, ∆p = δpq(−c+ bR) + o(δ), where
R = 1

1+l
is Wright’s expression for the relatedness in the infinite island model, for haploids.

In particular the condition for altruism to increase in frequency becomes then Hamilton’s
c < bR.

We call the second term in (4) the Hamilton term. By contrast the first term in (4) will
be called the extra-Hamilton term, and will be our concern below.

The meaning of the extra-Hamilton term IE∗p(h(s)) is not hard to understand. Looking
back in time, the lineage of the focal individual of type ∗ was in its group for a random
time with a geometric distribution with probability of success m. While in the group, that
lineage and its descendants affected the fitness of the group members and hence the present
value of s. These fitness effects are of order δ, so that the cummulative effect on s should
be of order δ. This means that s− sp = O(δ), where sp is the quasi-equilibrium value. And
since sp is within a difference of order δ from 1, where h′(1) = −λ, we have

IE∗p(h(s)) = h(sp) + IE∗p [h
′(sp)(s− sp)] + IE∗p [O((s− sp)2)]

= h(sp) + IE∗p [(h
′(1) +O(δ))(s− sp)] + IE∗p [O((s− sp)2)]

= h(sp)− λIE∗p(s− sp) +O((δ)2). (7)

This means that an effect of order δ on s−sp renders the extra-Hamilton term IEA
p (h(s))−

IEN
p (h(s)) also of order δ, and hence comparable to the Hamilton term δ(IEA

p (vAx ) −
IEN

p (vNx )).
To compute now the effect of ∗ on s − sp, given by IE∗p(s − sp), and complete the

computation in (7), we will look back in time (calling the present time 0), and ask for
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each previous time −t, t = 1, 2, ... whether the lineage of the focal was still in the group
or not, and if it was, what effect this has on the present expected size of the group. The
probability that the lineage of the focal was in the group at time −t is simply (1 − m)t.
If it was not in the group at that time, it produced no effect. If it was in the group then,
this means that we had an ancestor of the focal in the group then. In other words, we are
given the information that our group at time −t had a focal individual (the ancestor of our
time 0 focal) of type ∗. And conditioning on this information implies that the distribution
of x at time −t should be well approximated by beta(x|lp + 1, q), in case ∗ is A, and by
beta(x|lp, lq + 1) in case ∗ is N. In particular the conditional expected value of v̄x at time
−t would then be, respectively,

eA =

∫ 1

0

beta(x|lp+ 1, lq) v̄x dx, eN =

∫ 1

0

beta(x|lp, lq + 1) v̄x dx.

The average fitness of members of a group is h(s) + δv̄x +O(δ2). Therefore, from time −t
to time −t+ 1, the expected increment in s, due to the effect on v̄x of the possible presence
of the lineage of the focal there would be, up to an error of order δ2,

(1−m)t
(
δ IE∗p(v̄x at time −t |E)

)
(1−m) = δ e∗ (1−m)t+1, (8)

where E is the event that the lineage of the focal is in the group at time −t, the factor
(1 − m)t is the probability of E and the other (1 − m) factor is due to migration out of
the group between time −t and −t+ 1. Now, from time −t+ 1 to time 0, the disturbance
to the equilibrium value of s, computed in (8) is partially dissipated, due to the fact that
through λ and m effects, the dynamical evolution in the group pushes its size towards
the equilibrium value sp. As we are always within distance of order δ of that equilibrium,
which itself is within distance of order δ from 1, we can use for the computation of this
dissipative effect a linearized form of the evolution in the absence of selection, given by
(1). The quantity in (8) should therefore be multiplied by [(1− λ)(1−m)]t−1, to give the
contribution from time −t to the expectation IE∗p(s− sp), at the present time 0. Therefore,
summing over t, we have

IE∗p(s− sp) = δ e∗
∞∑
t=1

(1−m)2t(1− λ)t−1 = δ e∗
(1−m)2

1 − (1− λ)(1−m)2
.

Referring back to (7), we obtain the extra-Hamilton term as

IEA
p (h(s))− IEN

p (h(s)) = δ (eA − eN)Q, (9)

where

Q =
−λ(1−m)2

1 − (1− λ)(1−m)2
= − 1

1 + 2me/λ
, (10)

with

me = m
1−m/2
(1−m)2

. (11)
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The effective (for non-overlaping generations) migration rate me is the same that appears
in the expression of the relatedness

R =
1

1 + 2mene
. (12)

When m is small, me ≈ m. The similarity between (10) and (12) is intriguing, but we do
not have a complete explanation for why these expressions look so much alike. What is
important to keep in mind is that given the parameters of the neutral population, we obtain
ne, m, and λ and hence R and Q. And that those two are the only numerical features from
that neutral population structure that will appear in the condition for the spread of types
A. One should keep also in mind that Q varies in the interval [−1, 0], with the bottom
being reached when m << λ (crowded regime) and the top being reached when λ << m
(Hamilton regime).

Combining the Hamilton and the extra-Hamilton terms in (4), as computed respectively
in (5) and in (9), we obtain for the change over one generation in the frequency p of types
A:

∆p = pq
WA −WN

W̄
= δpqF (p) + o(δ), (13)

where q = 1− p and

F (p) = FHamilton(p) + Fextra-Hamilton(p), (14)

FHamilton(p) =

∫ 1

0

beta(x|lp+ 1, lq) vAx dx −
∫ 1

0

beta(x|lp, lq + 1) vNx dx,

Fextra-Hamilton(p) = Q

[∫ 1

0

beta(x|lp+ 1, lq) v̄x dx −
∫ 1

0

beta(x|lp, lq + 1) v̄x dx

]
.

The condition for the spread of types A is F (p) > 0, which in the limit p→ 0 (in which
beta(x|lp, lq + 1) concentrates on x = 0, as its mean and standard deviation vanish) gives
raise to the invasion condition∫ 1

0

beta(x|1, l) vAx dx + Q

∫ 1

0

beta(x|1, l) v̄x dx > 0. (15)

For an alternative, equivalent and more compact way of stating the results above, we
define

v̂∗x = v∗x + Qv̄x. (16)

With this definition, we can write

F (p) =

∫ 1

0

beta(x|lp+ 1, lq) v̂Ax dx −
∫ 1

0

beta(x|lp, lq + 1) v̂Nx dx. (17)
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And the condition (15) takes the form∫ 1

0

beta(x|1, l) v̂Ax dx > 0. (18)

From the results above, one can readily recover the results in [3] in the two extreme
cases of Q. When λ << m (Hamilton regime), Q vanishes and hence so does also
Fextra-Hamilton(p). In contrast, when m << λ (crowded regime), Q ≈ −1, from which it
is easy to show that if cooperation is costly, meaning vAx ≤ vNx for all x, with strict inequal-
ity for some interval of values of x, then ∆p < 0 and types A are eliminated by selection.
(To see it, observe that v̄x is between vAx and vNx , which implies that, with Q = −1, v̂Ax is
never positive and must be negative in some interval, while v̂Nx is never negative and must
be positive in some interval. From (17) we obtain F (p) < 0, for all p, and reference to (13)
completes the argument.)

In the case of a linear public goods game, vAx = −c+bx, vNx = bx, v̄x = xvAx +(1−x)vNx =
(b− c)x. These yield v̂Ax = −c+ (b+Q(b− c))x, v̂Nx = (b+Q(b− c))x. Therefore (13) and
(17) give (using the fact that the mean of a beta distribution with parameters α and β is
α/(α + β) to compute the beta integrals)

∆p = δpq(−c+ (b+Q(b− c))R) + o(δ), (19)

where R = 1/(1 + l) = 1/(1 + 2mene) = 1/(1 + 2me(n0/σ
2)), when n0 is large and m is

small and where σ2 is the variance of the offspring distribution. In particular, regardless
of the value of p, the condition F (p) > 0 for altruism to increase in frequency becomes

−c+ bR +Q(b− c)R > 0. (20)

When Q = 0, this reduces to the standard Hamilton condition c < bR, while in the opposite
extreme, when Q = −1, it reduces to the condition −c(1 − R) > 0, and altruism cannot
spread.

One can easily remember the effect of Q on the linear public goods games as simply
changing the benefit b into the effective benefit b+Q(b− c), while not affecting the cost c.

5 Islands with local and global regulation. Range of

weak selection

Selection can be in part local and in part global. To modify the ILR population structure
into ILGR (Islands with Local and Global Regulation), we define N as the total population
size and S = N/(gn0), as the scaled total population size. (Recall that there are g groups,
and that their equilibrium size in the absence of selection is n0, so that the equilibrium total
population size is then gn0.) The ILRG population structure is introduced by assuming
that the fitness of an individual of type ∗ in a group of scaled size s and fraction of types
A given by x, when the total scaled population size is S, is given by

w∗(x, s, S) = H(s, S) + δh(s)v∗x, (21)
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where the function H(s, S) takes the value 1 at (s, S) = (1, 1), is strictly decreasing in s
and S, and and is continuously differentiable, with ∂H(s, S)/∂s = −λ, ∂H(s, S)/∂S = −λg
at (s, S) = (1, 1). We will suppose that the parameters λ and λg are both positives and
their sum is at most 1. An example to keep in mind is the logistic H(s, S) = 1 + r0a(1 −
s) + r0(1 − a)(1 − S), where 0 ≤ a ≤ 1 is a parameter that splits the regulation into a
local part (fraction a) and a global part (fraction (1 − a)). In this example λ = ar0 and
λg = (1 − a)r0. The function h(s) is now only supposed to be differentiable and to have
h(1) = 1.

In the absence of selection (δ = 0), there is a stable equilibrium in which all groups
have size close to n0. (As before, we assume that g and n0 are large, so that fluctuations
around this equilibrium group size will be neglected in the analysis.) And the distribution
of the fraction x of types A over the groups will again be well approximated by a beta
distribution with parameters lp and lq.

If now δ is positive but sufficiently small, and the population is initially close to the
(δ = 0)-equilibrium described above (i.e., is in quasi-equilibrium), then the same arguments
and computations done in the case of ILR produce the following result. The fraction p of
types A in the population evolves according to (13), in which λ appears as before in the
expression (10) of Q, but λg is absent. This difference in λ and λg effects is intuitive. In the
computation of F (p) and in particular of the extra-Hamilton term, we are looking at the
effect that knowledge of the type of the focal has on its group’s x and s. This knowledge can
be seen as a “distubance of that group”, but not of the other groups, and hence amounts
to a negligeable disturbance of S. For this reason only λ and m reflect on the effect of this
“disturbance”, not λg.

But λg has an important effect on the evolution of the average scaled size of the groups.
When the frequency of types A is p, the population is close to a quasi-equilibrium in which
average scaled group size sp is such that the average fitness is one. Since groups will all
have approximatelly this average size, this means that also S = sp, and we must have
H(sp, sp) + δh(sp)IEp(v̄x) = 1, where IEp is the expectation with respect to beta(x|lp, lq).
If δ is sufficiently small, an approximate solution is obtained from 1− λ(sp − 1)− λg(sp −
1) + δIEp(v̄x) = 1, which yields

sp = 1 +
δIEp(v̄x)

λ+ λg
= 1 +

δ
∫ 1

0
beta(x|lp, lq) v̄x dx

λ+ λg
. (22)

This result is also very intuitive. Global and local regulation are equally important in
keeping the average group size from changing.

Note that in Section 2 we assumed a condition that was sufficient to make the equilib-
rium with s = 1 a universal attractor (apart from the population being extinct), so that
even if started far from it, regulation and migration would drive the population to that
equilibrium when δ = 0 and to quasi-equilibrium when δ > 0 is small. In the ILGR case,
this condition is that sH(s, s) < 1, when s < 1. We either add such an assumption, or
assume that initially the population is close to quasi-equilibrium.

We turn now to the question of how small δ must be for selection to be regarded as
weak. In doing this we will no longer assume that all the values |v∗x| are necessarily smaller
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than 1, as v∗x will appear explicitly in the conditions for weak selection, multiplying δ. The
computation leading to (22) illustrates the fact that for selection to be weak, when the
frequency of types A in the population is p, we do not need the full power of the “worst
case scenario” condition introduced in Section 3, which relies on δv∗x to be appropriately
small uniformly in x. In the computation above we only needed

δ |IEp(v̄x)| << λ+ λg, or equivalently δ

∣∣∣∣∫ 1

0

beta(x|lp, lq) v̄x dx
∣∣∣∣ << λ+ λg, (23)

and corrections to (22) will be of order (δIEp(v̄x))
2.

In addition to (23), the only other condition for weak selection is the requirement that
group sizes and the distribution of x equilibrate, with the given value of p much faster
than p evolves. Since group size equilibrates in a time scale at least as fast as 1/m and
the distribution of x equilibrates in a time scale of order 1/m, this additional condition for
selection to be weak when the frequency of types A is equal to p is that the evolution of
p occurs on a time scale that is much longer than 1/m. In the reasoning that follows we
will use the time evolution equation (13) obtained under the assumption of weak selection.
This means that we are verifying under what conditions the assumption of weak selection
is self-consistent. From (13), the change in p over one generation is δpqF (p). When p and
q are far from 0, the term pq is of order 1 and the time scale for p to change is then of
order 1/(δ|F (p)|). When p is close to 0, the time scale for relevant changes in p is the time
scale in which p changes by an amount comparable to the current value of p. But in this
case q ≈ 1, and (13) becomes in leading order ∆p/p = δF (p). The relevant time scale for
significant changes in p is again 1/(δ|F (p)|). The case in which p ≈ 1 is analogous. The
additional condition for weak selection, when the fraction of types A is p is therefore simply
given by

δ |F (p)| << m. (24)

We can summarize now our conclusions about ILGR (including the special case of ILR)
and weak selection. Conditions (23) and (24) are sufficient for the evolution to be well
described as weak selection, when the frequency of types A is p. In this case p evolves
according to (13), in which Q is given by (10). And as p(t) evolves by (13), scaled group
size equilibrates at sp(t) given by (22). The value of Q and hence of ∆p depends on how
the strength of local regulation, λ, compares to the strength of migration, m, but does not
depend on the strength of global regulation, λg. Global regulation plays nevertheless a role
identical to that of local regulation in attenuating group size change, as p changes.

In case p << 1 (invasion case), there is a further simplification in the conditions for
selection to be weak. In this case the beta integral in (23) is 0, as that beta has mean and
variance converging to 0 as p → 0, and v̄0 = vN0 = 0. Therefore (23) is always satisfied,
and therefore weak selection requires only (24).

For the iterated games that are our main concern in the paper, the values of v∗x may
vary by factors comparable to the number of iterations of the game, as x varies from 0 to
1. Therefore, when we analyze invasion by cooperators, it is important that we only have
the relatively mild condition (24) as reqirement to apply the weak selection results.
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6 The theory in terms of regression coefficients. Com-

parison with simulations

In this section we explain that the partition (14) of F (p) can be written in terms of re-
gression coefficients. In addition to its conceptual value, this remark provides a way to
measuring Q in simulations or (at least in principle) real data. We will also explain that
if the observed value of Q is close to the theoretical one and the observed distribution of
types in groups is also close to the theoretical beta distribution, this is sufficient to trust
the predictions of the theory.

It is well know that (3) can be rewritten in terms of covariances or regression coefficients.
For this purpose, we will consider the random experiment in which a focal individual is
chosen at random from the population. This random experiment is equivalent to choosing
a group at random, with probabilities proportional to group size, and then choosing the
focal individual at random from this group. We use the notation IA for the random variable
that takes the value 1 if the focal is of type A and 0 if it is of type N. And for arbitrary
random variable f we will use the notation βf,∗ = Cov(f, IA)/Var(IA) = Cov(f, IA)/(pq)
for the regression coefficient of f on IA. Simple algebraic manipulations (see, e.g., Section 3
in the supplementary material of [4]), show that (assuming quasi-equilibrium with fraction
p of types A)

βf,∗ = IEA
p (f) − IEN

p (f). (25)

In particular, (3) can be rewritten as

∆p = pq
βw,∗
W̄

, (26)

where w is the absolute fitness of the focal individual. In quasi-equilibrium W̄ = 1 +O(δ),
so that we can ignore it in the weak selection case.

Using (21), the partition into a Hamilton and an extra-Hamilton term in Section 4 can
now be seen as a partition of the regression coefficient in (26) as

βw,∗ = βH(s,S),∗ + βδh(s)v∗x,∗. (27)

Under weak selection in quasi-equilibrium, s = 1 +O(δ) and h(s) = 1 +O(δ), so that (26)
and (27) together become

∆p = pqδ

(
βv∗x,∗ +

1

δ
βH(s,S),∗

)
+ O(δ2). (28)

The two terms inside the parenteses in (28) are respectively the Hamilton and extra-
Hamilton terms. The analysis of the extra-Hamilton term in Section 4, is equivalent to the
statement that

βH(s,S),∗ = δ Qβv̄x,∗ + o(δ), (29)
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with Q given by (10), and where v̄x is the average payoff in the focal’s group. In other
words, if we define the empirical value of Q as

Qemp =
1

δ

βH(s,S),∗

βv̄x,∗
, (30)

then our analysis in Section 4 led to the claim that

Qemp = Q, (31)

with Q given by (10). While this theoretical claim depended on the assumption that n0 is
very large, we observed in our simulations good agreement in (31) with fairly small n0 (see
Table 1 in the paper).

Now, suppose that (31) is closely verified in the data. This allows us to replace (28)
with the approximation

∆p ≈ pqδ
(
βv∗x,∗ + Q βv̄,∗

)
= pqδ βv̂∗x,∗, (32)

with Q given by (10) and v̂∗x = v∗x + Qv̄x. And this means (thanks to (25) with f = v̂∗x)
that if the distribution of x in the groups is given by the beta(lp,lq) distribution, with
l = 1/Fst− 1, then (17) holds in good approximation.

In summary, to test the theory in simulations, it is sufficient to test that in good
approximation (31) holds and the distribution of the fraction of types A in the groups
is close to the theoretical beta(lp,lq). Results along these lines are presented in Table
1 in the paper. In our simulations, we chose h(s) = 1, and it is interesting to observe
that in this special case the term O(δ2) in (28) is actually 0. And we chose the logistic
H(s, S) = 1 + r0 − λs − λgS (actually this expression becomes negative when s or S are
very large, and H(s, S) is then assumed to be 0, but when n0 is large s or S are rarely
that large). In this case we can use the independence between S and the type of the focal
(valid as a good approximation when g is large), to conclude that βS,∗ = 0, and hence
βH(s,S),∗ = −λβs, ∗. In this case (30) becomes

Qemp = − λ
δ

βs,∗
βv̄x,∗

. (33)

7 Some iterated games

We apply now the invasion condition (18) to some iterated games, as discussed in the
paper. For this purpose we assume an underlying game with payoffs to types A and N
being given, respectively, by vx and v′x. If the fraction x of types A in the group is smaller
than a threshold θ the game is played only once, but if x ≥ θ, then the game is played T
times. The complete game has then payoffs vAx = vx and vNx = v′x, if x < θ and vAx = Tvx
and vNx = Tv′x, if x ≥ θ.
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The invasion condition can then be written as

F (0) =

∫ θ

0

beta(x|1, l) v̂x dx + T

∫ 1

θ

beta(x|1, l) v̂x dx > 0, (34)

where v̂x = vx +Qv̄x = vx +Q(xvx + (1− x)v′x).
Because the beta distribution density in this integral has the simple form beta(x|1, l) =

l(1 − x)l−1, one can perform the integration explicitly in various cases of interest. We
present two of these below.

First we consider the case vx = v0 for x ∈ [0, θ), vx = vθ for x ∈ [θ, 1], v′x = 0 for
x ∈ [0, θ), v′x = v′θ for x ∈ [θ, 1]. In this case we obtain

F (0) = v0 {1 +QR− [1 + θQ+ (1− θ)QR] (1− θ)l}
+ T [v̂θ + (1− θ)(vθ − v′θ)QR] (1− θ)l, (35)

where v̂θ = vθ +Q(θvθ + (1− θ)v′θ), and we used the fact that v̂0 = v0.
This exact expression helps us better understand under which conditions the much

simpler (8) and (12) in the paper are good approximations. (For the payoffs we are studying,
these displays in the paper are exact when Q = 0, as can be readily checked from (35), but
we are interested in arbitrary Q.) Inspecting (35), we see that QR << 1 is needed. But
this is not enough, as the term v0Qθ(1− θ)l in the first line, needs also to be negligeable as
compared to the term T v̂θ(1− θ)l in the second line. This can be assured if T >> |v0/v̂θ|.

We are interested in the critical value of T , for which F (0) = 0. If we compute it using

display (12) in the paper, we obtain the value T = |v0/v̂θ|T̃ , where T̃ = (1−θ)−l−1. The last
condition in the previous paragraph tells us that we should not trust this approximation,
and must instead use the full (35), unless T̃ >> 1. On the other hand, if T̃ >> 1, it follows
that (1 − θ)1/R >> 1 and hence R << 1. This implies that the condition QR << 1 in
the previous paragraph is also satisfied. In conclusion: we can trust display (12) in the
paper as a reasonable approximation if it provides a critical value T >> |v0/v̂θ|, but not
otherwise.

We turn now to the iterated linear public goods game vx = −c+ bx, v′x = bx, 0 < c < b,
as the underlying game. In this case v̂x = −c + bQx, where bQ = b + Q(b − c), and (34)
yields

F (0) = −c + bQR + (T − 1) [−c+ bQθ + (1− θ)bQR] (1− θ)l

= v0 + bQR + (T − 1) [v̂θ + (1− θ)bQR] (1− θ)l. (36)

For display (8) in the paper to be a good approximation, we need bQR << c. This
reduces (36) to

F (0) = v0 + (T − 1)v̂θ(1− θ)l, (37)

which is not quite the left-hand-side of display (8) in the paper, but is also very simple.
Moreover, since Q ∈ [−1, 0], we have bQ ≥ c and hence the assumption bQR << c implies
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R << 1. Therefore also (1− θ)l << 1 and T̃ = (1− θ)−l− 1 ≈ (1− θ)−l >> 1. And hence,
the condition for invasion F (0) > 0, is well approximated in this case by

T >
−v0

v̂θ
T̃ + 1. (38)

Unless |v0/v̂θ| << 1, the right-hand-side is >> 1, and this condition on T is basically the
same as that which appears in display (12) of the paper.
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