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A Additional Figures
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Figure Web-1: Magnitude of the mean acceleration vector during standing (expressed in g
units) using the raw and normalized data. Blue triangles are for raw data while red circles
are for normalized data.
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Figure Web-2: Cross-validated mean true prediction rate using different movelet lengths for
the training data.
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Figure Web-3: Prediction results of one subject’s four types of walking. The top panels
display data for normalWalk (left column) and normalWalk noSwing (right column), the
bottom panels display data for fastWalk (left column) and fastWalking noSwing (right col-
umn). The activity types can also be distinguished by the annotated labels in each plot. For
the accelerometry data, the black lines are for the up-down axis, the red lines are for the
forward-backward axis, and the blue lines are for the left-right axis.
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B A Test for Systematic Bias

Let X ∈ R3 be the acceleration vector at an observation point when the subject is standing
still. Suppose that X follows a multivariate normal distribution with mean µ and covariance
Σ. Let X1, . . . ,Xn be i.i.d. copies of X. Then X̄ = n−1

∑n
i=1 Xi is normal with mean µ and

covariance Σ/n. Testing if there is systematic bias in the observations is to testing ‖µ‖ = 1
where ‖ · ‖ denotes the Euclidean norm. We consider the testing statistic ‖X̄‖2, which has
mean ‖µ‖2 + tr(Σ)/n and variance var(‖X̄‖2). Here tr(·) denotes the trace of a square
matrix, i.e., the sum of the diagonal entries. The derivation of the variance term is more
involved. We let ODOT be the eigendecomposition of Σ, where O is an orthogonal matrix
with OTO = OOT = I3 and D is a diagonal matrix with the diagonal entries d1, d2 and d3.
Now let Y = (Y1, Y2, Y3)T = OT X̄, then Y is normal with mean µy = (µy1, µy2, µy3)T = OTµ
and covariance matrix D/n. It is easy to show that

var(‖X̄‖2) = var(‖Y‖2) =
3∑

k=1

var(Y 2
k ) =

3∑
k=1

(6µ2
ykdk/n+ 3d2

k/n
2).

Hence

var(‖X̄‖2) =
3∑

k=1

(6µ2
ykdk/n+ 3d2

k/n
2)

=
6

n
µTy Dµy +

3

n2
tr(Σ2)

=
6

n
µTODO′µ+

3

n2
tr(Σ2)

=
6

n
µTΣµ+

3

n2
tr(Σ2).

By the central limit theorem, ‖X̄‖
2−‖µ‖2−tr(Σ)/n√

var(‖X̄‖2)
is approximately normal. Then an α-level

rejection region for testing ‖µ‖ = 1 is given by

∣∣‖X̄‖2 − 1
∣∣ > zα/2

√
6

n
µTΣµ

Note that we dropped the term tr(Σ)/n in the numerator and the term 3tr(Σ2)/n2 in the
denominator as they are of smaller order than ‖µ‖2 and 6µTΣµ/n, respectively. The term
µTΣµ is unknown and needs to be estimated. Since under the null hypothesis that ‖µ‖ = 1
we can derive µTΣµ ≤ ‖Σ‖op, where ‖ · ‖op is the operator norm of a matrix, we use instead
a conservative rejection region

∣∣‖X̄‖2 − 1
∣∣ > zα/2

√
6

n
‖Σ̂‖op,
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Table Web-1: Testing statistic T for the 20 subjects
Subject T

1 209.38
2 76.11
3 473.84
4 103.94
5 71.17
6 209.28
7 183.57
8 84.22
9 134.98
10 365.15
11 228.35
12 0.65
13 1.93
14 22.47
15 9.59
16 191.47
17 83.44
18 11.68
19 11.91
20 165.02

where Σ̂ is the sample covariance matrix from the sample {X1, . . . ,Xn}. We use α = 0.05
so that zα/2 = 1.96. We display the value of the term

T =

∣∣‖X̄‖2 − 1
∣∣√

6
n
‖Σ̂‖op

for all subjects in Table Web-1. The results show that except for subjects 12 and 13, the
null hypothesis of ‖µ‖ is always rejected.

C Derivation of Rotation Matrices

Let a1 and a2 be two vectors in R3 and a1 × a2 6= 0. Let

b2 =
a2

‖a2‖2

,

b1 =
a1 − (aT1 b2)b2

‖a1 − (aT1 b2)b2‖2

.
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Then b1 and b2 are two unit vectors and are orthogonal to each other. We write a1 and a2

as

a2 = c2b2,

a1 = c1b1 + c3b2.

Then c1 > 0, c2 > 0 and c3 > 0.

Lemma 1. Let

R∗ = arg min
RT =R−1 and eT

3 R(a1×a2)>0

(
‖Ra1 + e1‖2

2 + ‖Ra2 + e2‖2
2

)
.

Then R∗ is unique with the expression cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

T

[b1,b2,b1 × b2]T ,

where

cos(θ) = − c1 + c3√
(c1 + c2)2 + c2

3

,

sin(θ) = − c2√
(c1 + c2)2 + c2

3

.

Proof. For an arbitrary rotation matrix R, RT = R−1 is also a rotation matrix. Hence RTe1

and RTe1 remain orthogonal unit vectors. For the minimization problem, there exists an
θ ∈ [0, π] such that

RTe1 = cos(θ)b1 + sin(θ)b2,

RTe2 = − sin(θ)b1 + cos(θ)b2.
(A-1)

It follows that

‖Ra1 + e1‖2
2 + ‖Ra2 + e2‖2

2

= ‖a1 + RTe1‖2
2 + ‖a2 + RTe2‖2

2

= ‖(c1 + cos(θ))b1 + (c3 + sin(θ))b2‖2
2 + ‖ − sin(θ)b1 + (c2 + cos(θ))b2‖2

2

= (c1 + cos(θ))2 + (c3 + sin(θ))2 + sin(θ)2 + (c2 + cos(θ))2

= 2 + c2
1 + c2

2 + c2
3 + 2(c1 + c2) cos(θ) + 2c3 sin(θ).

Therefore, ‖Ra1 + e1‖2
2 + ‖Ra2 + e2‖2

2 is minimized if cos(θ) = −(c1 + c2)/
√

(c1 + c2)2 + c2
3

and sin(θ) = −c3/
√

(c1 + c2)2 + c2
3. By (A-1),

RTe3 = RT (e1 × e2)

= (RTe1)× (RTe2)

= b1 × b2.
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Then

RT [e1, e2, e3] = [b1,b2,b1 × b2]

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 .

It’s easy to verify that R−1 = RT and the proof is complete.

D An Alternative Approach for Normalizing Accelerom-

etry Data

We propose a method for jointly estimating the rotation matrix R and the bias vector b for
standing. We minimize the following objective function

min
RT =R−1,b

‖Ra1 + e1 − b‖2
2 + ‖Ra2 + e2‖2

2.

It can be shown easily that the minimizers to the above are b̂ = R̂a1 + e1 and

R̂ = arg min
RT =R−1

‖Ra2 + e2‖2
2.

However, R̂ is not unique and satisfies R̂T = R̂−1 and R̂Te2 = −b2. Here we are using the
notation at the beginning of last section. The idea is that we expect the bias b to be small
and hence we select the final estimate of rotation matrix by

R∗ = arg min
R̂T =R̂−1,R̂T e2=−b2

‖Ra1 + e1‖2
2.

It can be shown that R∗,Te1 = −b1. Therefore with the conditions

R∗,Te1 = −b1,R
∗,Te2 = −b2

and that eT3 R∗(a1 × a2) > 0, we obtain

R∗ = [−b1,−b2,b1 × b2]T .

The results from the method proposed in the paper and the above alternative method
can be compared. It is easy to see that if c3 is zero, i.e., a1 and a2 are orthogonal, expected
if no bias in the measurement, then cos(θ) = −1 and we get the same results. If c3 is far
from zero, then we will get different results. For the data example, we found c3 small for all
subjects and hence both methods give very similar results.
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