Web-based Supplementary Materials for "Movement Prediction Using Accelerometers in a Human Population"

by

Luo Xiao, Bing He, Annemarie Koster, Paolo Caserotti, Brittney Lange-Maia, Nancy W. Glynn, Tamara B. Harris and Ciprian M. Crainiceanu

A Additional Figures

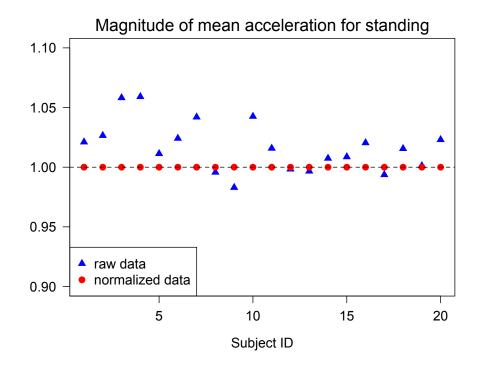


Figure Web-1: Magnitude of the mean acceleration vector during standing (expressed in g units) using the raw and normalized data. Blue triangles are for raw data while red circles are for normalized data.

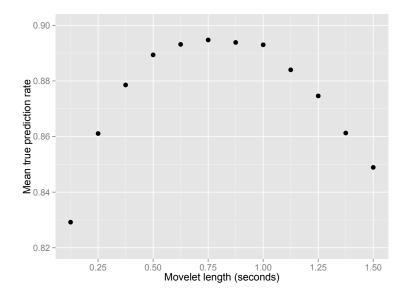


Figure Web-2: Cross-validated mean true prediction rate using different movelet lengths for the training data.

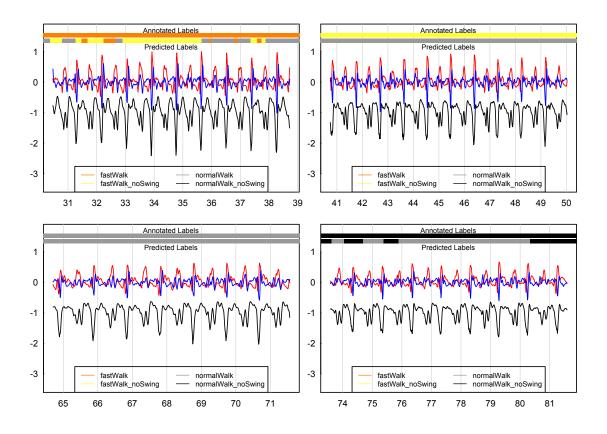


Figure Web-3: Prediction results of one subject's four types of walking. The top panels display data for normalWalk (left column) and normalWalk_noSwing (right column), the bottom panels display data for fastWalk (left column) and fastWalking_noSwing (right column). The activity types can also be distinguished by the annotated labels in each plot. For the accelerometry data, the black lines are for the up-down axis, the red lines are for the forward-backward axis, and the blue lines are for the left-right axis.

B A Test for Systematic Bias

Let $\mathbf{X} \in \mathbb{R}^3$ be the acceleration vector at an observation point when the subject is standing still. Suppose that \mathbf{X} follows a multivariate normal distribution with mean $\boldsymbol{\mu}$ and covariance $\boldsymbol{\Sigma}$. Let $\mathbf{X}_1, \ldots, \mathbf{X}_n$ be i.i.d. copies of \mathbf{X} . Then $\bar{\mathbf{X}} = n^{-1} \sum_{i=1}^n \mathbf{X}_i$ is normal with mean $\boldsymbol{\mu}$ and covariance $\boldsymbol{\Sigma}/n$. Testing if there is systematic bias in the observations is to testing $\|\boldsymbol{\mu}\| = 1$ where $\|\cdot\|$ denotes the Euclidean norm. We consider the testing statistic $\|\bar{\mathbf{X}}\|^2$, which has mean $\|\boldsymbol{\mu}\|^2 + \operatorname{tr}(\boldsymbol{\Sigma})/n$ and variance $\operatorname{var}(\|\bar{\mathbf{X}}\|^2)$. Here $\operatorname{tr}(\cdot)$ denotes the trace of a square matrix, i.e., the sum of the diagonal entries. The derivation of the variance term is more involved. We let \mathbf{ODO}^T be the eigendecomposition of $\boldsymbol{\Sigma}$, where \mathbf{O} is an orthogonal matrix with $\mathbf{O}^T \mathbf{O} = \mathbf{OO}^T = \mathbf{I}_3$ and \mathbf{D} is a diagonal matrix with the diagonal entries d_1, d_2 and d_3 . Now let $\mathbf{Y} = (Y_1, Y_2, Y_3)^T = \mathbf{O}^T \bar{\mathbf{X}}$, then \mathbf{Y} is normal with mean $\boldsymbol{\mu}_y = (\mu_{y1}, \mu_{y2}, \mu_{y3})^T = \mathbf{O}^T \boldsymbol{\mu}$ and covariance matrix \mathbf{D}/n . It is easy to show that

$$\operatorname{var}(\|\bar{\mathbf{X}}\|^2) = \operatorname{var}(\|\mathbf{Y}\|^2) = \sum_{k=1}^3 \operatorname{var}(Y_k^2) = \sum_{k=1}^3 (6\mu_{yk}^2 d_k / n + 3d_k^2 / n^2).$$

Hence

$$\operatorname{var}(\|\bar{\mathbf{X}}\|^2) = \sum_{k=1}^3 (6\mu_{yk}^2 d_k/n + 3d_k^2/n^2)$$
$$= \frac{6}{n} \mu_y^T \mathbf{D} \mu_y + \frac{3}{n^2} \operatorname{tr}(\boldsymbol{\Sigma}^2)$$
$$= \frac{6}{n} \mu^T \mathbf{O} \mathbf{D} \mathbf{O}' \boldsymbol{\mu} + \frac{3}{n^2} \operatorname{tr}(\boldsymbol{\Sigma}^2)$$
$$= \frac{6}{n} \mu^T \boldsymbol{\Sigma} \boldsymbol{\mu} + \frac{3}{n^2} \operatorname{tr}(\boldsymbol{\Sigma}^2).$$

By the central limit theorem, $\frac{\|\bar{\mathbf{X}}\|^2 - \|\boldsymbol{\mu}\|^2 - \operatorname{tr}(\boldsymbol{\Sigma})/n}{\sqrt{\operatorname{var}(\|\bar{\mathbf{X}}\|^2)}}$ is approximately normal. Then an α -level rejection region for testing $\|\boldsymbol{\mu}\| = 1$ is given by

$$\left|\|\bar{\mathbf{X}}\|^2 - 1\right| > z_{\alpha/2} \sqrt{\frac{6}{n}} \boldsymbol{\mu}^T \boldsymbol{\Sigma} \boldsymbol{\mu}$$

Note that we dropped the term $tr(\Sigma)/n$ in the numerator and the term $3tr(\Sigma^2)/n^2$ in the denominator as they are of smaller order than $\|\boldsymbol{\mu}\|^2$ and $6\boldsymbol{\mu}^T \Sigma \boldsymbol{\mu}/n$, respectively. The term $\boldsymbol{\mu}^T \Sigma \boldsymbol{\mu}$ is unknown and needs to be estimated. Since under the null hypothesis that $\|\boldsymbol{\mu}\| = 1$ we can derive $\boldsymbol{\mu}^T \Sigma \boldsymbol{\mu} \leq \|\Sigma\|_{op}$, where $\|\cdot\|_{op}$ is the operator norm of a matrix, we use instead a conservative rejection region

$$\left|\|\bar{\mathbf{X}}\|^2 - 1\right| > z_{\alpha/2} \sqrt{\frac{6}{n} \|\hat{\boldsymbol{\Sigma}}\|_{op}},$$

Subject	Т
1	209.38
2	76.11
3	473.84
4	103.94
5	71.17
6	209.28
7	183.57
8	84.22
9	134.98
10	365.15
11	228.35
12	0.65
13	1.93
14	22.47
15	9.59
16	191.47
17	83.44
18	11.68
19	11.91
20	165.02

Table Web-1: Testing statistic T for the 20 subjects

where $\hat{\Sigma}$ is the sample covariance matrix from the sample $\{\mathbf{X}_1, \ldots, \mathbf{X}_n\}$. We use $\alpha = 0.05$ so that $z_{\alpha/2} = 1.96$. We display the value of the term

$$T = \frac{\left| \|\bar{\mathbf{X}}\|^2 - 1 \right|}{\sqrt{\frac{6}{n} \|\hat{\boldsymbol{\Sigma}}\|_{op}}}$$

for all subjects in Table Web-1. The results show that except for subjects 12 and 13, the null hypothesis of $\|\mu\|$ is always rejected.

C Derivation of Rotation Matrices

Let \mathbf{a}_1 and \mathbf{a}_2 be two vectors in \mathbb{R}^3 and $\mathbf{a}_1 \times \mathbf{a}_2 \neq 0$. Let

$$\begin{split} \mathbf{b}_2 &= \frac{\mathbf{a}_2}{\|\mathbf{a}_2\|_2}, \\ \mathbf{b}_1 &= \frac{\mathbf{a}_1 - (\mathbf{a}_1^T \mathbf{b}_2) \mathbf{b}_2}{\|\mathbf{a}_1 - (\mathbf{a}_1^T \mathbf{b}_2) \mathbf{b}_2\|_2}. \end{split}$$

Then \mathbf{b}_1 and \mathbf{b}_2 are two unit vectors and are orthogonal to each other. We write \mathbf{a}_1 and \mathbf{a}_2 as

$$\mathbf{a}_2 = c_2 \mathbf{b}_2,$$
$$\mathbf{a}_1 = c_1 \mathbf{b}_1 + c_3 \mathbf{b}_2.$$

Then $c_1 > 0, c_2 > 0$ and $c_3 > 0$.

Lemma 1. Let

$$\mathbf{R}^* = \arg \min_{\mathbf{R}^T = \mathbf{R}^{-1} \text{ and } \mathbf{e}_3^T \mathbf{R}(\mathbf{a}_1 \times \mathbf{a}_2) > 0} \left(\|\mathbf{R}\mathbf{a}_1 + \mathbf{e}_1\|_2^2 + \|\mathbf{R}\mathbf{a}_2 + \mathbf{e}_2\|_2^2 \right).$$

Then \mathbf{R}^* is unique with the expression

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix}^T [\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_1 \times \mathbf{b}_2]^T,$$

where

$$\cos(\theta) = -\frac{c_1 + c_3}{\sqrt{(c_1 + c_2)^2 + c_3^2}},\\ \sin(\theta) = -\frac{c_2}{\sqrt{(c_1 + c_2)^2 + c_3^2}}.$$

Proof. For an arbitrary rotation matrix \mathbf{R} , $\mathbf{R}^T = \mathbf{R}^{-1}$ is also a rotation matrix. Hence $\mathbf{R}^T \mathbf{e}_1$ and $\mathbf{R}^T \mathbf{e}_1$ remain orthogonal unit vectors. For the minimization problem, there exists an $\theta \in [0, \pi]$ such that

$$\mathbf{R}^{T} \mathbf{e}_{1} = \cos(\theta) \mathbf{b}_{1} + \sin(\theta) \mathbf{b}_{2},$$

$$\mathbf{R}^{T} \mathbf{e}_{2} = -\sin(\theta) \mathbf{b}_{1} + \cos(\theta) \mathbf{b}_{2}.$$
 (A-1)

It follows that

$$\begin{aligned} \|\mathbf{R}\mathbf{a}_{1} + \mathbf{e}_{1}\|_{2}^{2} + \|\mathbf{R}\mathbf{a}_{2} + \mathbf{e}_{2}\|_{2}^{2} \\ &= \|\mathbf{a}_{1} + \mathbf{R}^{T}\mathbf{e}_{1}\|_{2}^{2} + \|\mathbf{a}_{2} + \mathbf{R}^{T}\mathbf{e}_{2}\|_{2}^{2} \\ &= \|(c_{1} + \cos(\theta))\mathbf{b}_{1} + (c_{3} + \sin(\theta))\mathbf{b}_{2}\|_{2}^{2} + \| - \sin(\theta)\mathbf{b}_{1} + (c_{2} + \cos(\theta))\mathbf{b}_{2}\|_{2}^{2} \\ &= (c_{1} + \cos(\theta))^{2} + (c_{3} + \sin(\theta))^{2} + \sin(\theta)^{2} + (c_{2} + \cos(\theta))^{2} \\ &= 2 + c_{1}^{2} + c_{2}^{2} + c_{3}^{2} + 2(c_{1} + c_{2})\cos(\theta) + 2c_{3}\sin(\theta). \end{aligned}$$

Therefore, $\|\mathbf{Ra}_1 + \mathbf{e}_1\|_2^2 + \|\mathbf{Ra}_2 + \mathbf{e}_2\|_2^2$ is minimized if $\cos(\theta) = -(c_1 + c_2)/\sqrt{(c_1 + c_2)^2 + c_3^2}$ and $\sin(\theta) = -c_3/\sqrt{(c_1 + c_2)^2 + c_3^2}$. By (A-1),

$$\mathbf{R}^{T}\mathbf{e}_{3} = \mathbf{R}^{T}(\mathbf{e}_{1} \times \mathbf{e}_{2})$$
$$= (\mathbf{R}^{T}\mathbf{e}_{1}) \times (\mathbf{R}^{T}\mathbf{e}_{2})$$
$$= \mathbf{b}_{1} \times \mathbf{b}_{2}.$$

Then

$$\mathbf{R}^{T}[\mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3}] = [\mathbf{b}_{1},\mathbf{b}_{2},\mathbf{b}_{1}\times\mathbf{b}_{2}] \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

It's easy to verify that $\mathbf{R}^{-1} = \mathbf{R}^T$ and the proof is complete.

D An Alternative Approach for Normalizing Accelerometry Data

We propose a method for jointly estimating the rotation matrix \mathbf{R} and the bias vector \mathbf{b} for standing. We minimize the following objective function

$$\min_{\mathbf{R}^T = \mathbf{R}^{-1}, \mathbf{b}} \|\mathbf{R}\mathbf{a}_1 + \mathbf{e}_1 - \mathbf{b}\|_2^2 + \|\mathbf{R}\mathbf{a}_2 + \mathbf{e}_2\|_2^2.$$

It can be shown easily that the minimizers to the above are $\hat{\mathbf{b}} = \hat{\mathbf{R}}\mathbf{a}_1 + \mathbf{e}_1$ and

$$\hat{\mathbf{R}} = \arg\min_{\mathbf{R}^T = \mathbf{R}^{-1}} \|\mathbf{R}\mathbf{a}_2 + \mathbf{e}_2\|_2^2.$$

However, $\hat{\mathbf{R}}$ is not unique and satisfies $\hat{\mathbf{R}}^T = \hat{\mathbf{R}}^{-1}$ and $\hat{\mathbf{R}}^T \mathbf{e}_2 = -\mathbf{b}_2$. Here we are using the notation at the beginning of last section. The idea is that we expect the bias **b** to be small and hence we select the final estimate of rotation matrix by

$$\mathbf{R}^* = \arg\min_{\hat{\mathbf{R}}^T = \hat{\mathbf{R}}^{-1}, \hat{\mathbf{R}}^T \mathbf{e}_2 = -\mathbf{b}_2} \|\mathbf{R}\mathbf{a}_1 + \mathbf{e}_1\|_2^2.$$

It can be shown that $\mathbf{R}^{*,T}\mathbf{e}_1 = -\mathbf{b}_1$. Therefore with the conditions

$$\mathbf{R}^{*,T}\mathbf{e}_1 = -\mathbf{b}_1, \mathbf{R}^{*,T}\mathbf{e}_2 = -\mathbf{b}_2$$

and that $\mathbf{e}_3^T \mathbf{R}^*(\mathbf{a}_1 \times \mathbf{a}_2) > 0$, we obtain

$$\mathbf{R}^* = [-\mathbf{b}_1, -\mathbf{b}_2, \mathbf{b}_1 \times \mathbf{b}_2]^T.$$

The results from the method proposed in the paper and the above alternative method can be compared. It is easy to see that if c_3 is zero, i.e., \mathbf{a}_1 and \mathbf{a}_2 are orthogonal, expected if no bias in the measurement, then $\cos(\theta) = -1$ and we get the same results. If c_3 is far from zero, then we will get different results. For the data example, we found c_3 small for all subjects and hence both methods give very similar results.