
1

Supplementary Material for the Paper

BinPacker: Packing-based de novo Transcriptome Assembly from RNA-seq Data

Juntao Liu1, †, Guojun Li1,†,*, Zheng Chang1, Bingqiang Liu1, Rick McMullen3, Pengyin Chen4,

Xiuzhen Huang2, *

1. Supplementary Notes: parameter setup for the compared assemblers

1.1 Simulated and E.coli datasets

Parameters are set up as follows for each algorithm: ABySS: “abyss-pe k=25 c=2 E=0 j=6 in

= ‘left.fq right.fq’ ”; Trans-ABySS was run by setting k-mer length k to 25, 29, 33, 37, 43;

Trinity: “--CPU 6 --bflyHeapSpaceMax 10G --bflyGCThreads 4 --SS_lib_type RF”;

BinPacker: “k=29 - -SS_lib_type RF”; Oases: “-ins_length 200 -cov_cutoff 2

-edgeFractionCutoff 0.05 -min_trans_lgth 200”; SOAPdenovo-Trans was run using default

parameters; IDBA-Tran: “-mink 21 -maxk 37 -step 4”; Stringtie was run using default

parameters; Bridger: “k=25 --SS_lib_type RF”. All the assemblers were tested on a server

with 512GB of RAM.

1.2 Real datasets

Parameters are set up as follows for each algorithm: ABySS: “abyss-pe k=25 c=2 E=0 j=6 in

= ‘left.fq right.fq’ ”; Trans-ABySS was run by setting k-mer length k to 25, 29, 33, 37, 43;

Trinity: “--CPU 6 --bflyHeapSpaceMax 10G --bflyGCThreads 4” for non-strand specific

human and dog data and “--SS_lib_type RF” for the strand-specific mouse data; BinPacker:

k=25 for dog and human data while k=31 and “- -SS_lib_type RF” for mouse data; Oases:

“-ins_length 200 -cov_cutoff 2 -edgeFractionCutoff 0.05 -min_trans_lgth 200”;

SOAPdenovo-Trans was run using default parameters; IDBA-Tran: “-mink 21 -maxk 43 -step

4” for human and dog data and “-mink 21 -maxk 37 -step 4” for mouse data; Stringtie was run

using default parameters; Bridger: k=25 for dog and human data while k=31 and

‘--SS_lib_type RF’ for mouse data. All the assemblers were performed on a server with

512GB of RAM.

2. Supplementary Methods

BinPacker constructs splicing graphs effectively and efficiently

A splicing graph of a gene is a directed acyclic graph, whose nodes represent exons and two

nodes are connected by an edge if and only if some splicing event occurs between them.

Several splicing events and their corresponding splicing graphs are shown in Figure D. It is

worthy of mentioning that while BinPacker is initially developed to handle exon skip, the

main alternative splicing events in mammalian transcriptomes, the same framework can deal

with general splicing events including intron retention and alternative splicing sites as

demonstrated in Figure D(ii) and D(iii). The key is that we introduced the concept of artificial

exon, which is a continuous genome sequence without any alternative splicing events.



2

Basically, based on this generalized definition of exon, all alternative splicing events could be

handled using the algorithm below.

BinPacker builds splicing graphs for all genes encoded in the genome based on the given

RNA-seq data. In an ideal situation, the constructed graphs would have a one-to-one

correspondence to all the (expressed) genes. However, it is not always the case due to

homologous genes and low sequence coverage for some genes. In spite of this, it will not lead

to a serious problem for our ultimate recovery of full-length transcripts of individual genes

even if some splicing graphs may cover multiple genes or only parts of a gene. Hence, we

may assume that each constructed splicing graph represents RNA-seq data from one single

gene.

We first build a hash table from all the reads. For each k-mer (default k = 25) occurring in

the reads, the hash table records the abundance of that k-mer and the IDs of reads containing

that k-mer. To reducing memory usage, each k-mer is stored as a 64-bit unsigned integer with

2-bit nucleotide encoding, thus the parameter k is not allowed to be larger than 32. Then, we

remove error-containing k-mers and select seed k-mers by the same strategy in Trinity [1]. A

k-mer is chosen as a seed must meet the following criteria: (a) Shannon’s Entropy [2] of the

k-mer H≥1.5, (b) the k-mer occurs at least twice in the complete set of input reads, and (c) the

k-mer is not palindromic[1]. The seed k-mer is extended to a complete splicing graph greedily

in the following steps:

(1) We extend the seed k-mer in two directions by repeatedly selecting the most frequent

k-mer in the hash table, overlapping k-1 nucleotides with the current contig terminus, in order

to provide a single-base extension. A k-mer will be immediately marked as long as it was

used in the construction of current splicing graph and the marked k-mer will not be used again

in this graph. However, during the construction of splicing graphs, a marked k-mer is allowed

to be used for the extension of a splicing graph if and only if the marked k-mer has not been

in the graph and the graph cannot be extended without the marked k-mer. But a marked k-mer

is not allowed to be selected as a new seed for the construction of next splicing graphs.

(2) When the contig cannot be extended, we use paired-read information to get further

extension. Based on our hash table, the reads mapping to the terminus of this contig are easily

collected. If some of their paired-end reads are not used in the current splicing graph, it

implies that the contig is not complete. We may generate a new contig from an unused

paired-read, and then connect it to the existing contig by using the pair information (Figure E).

Thus, some transcripts that cannot be covered by overlapping k-mers would be reconstructed.

The ultimate contig is used as the trunk of a splicing graph to be constructed.

(3) We check each k-mer in the trunk to see if there exists a k-mer having an alternative

extension that has not been used (such a k-mer is called a bifurcation k-mer). Once a

bifurcation k-mer is found, we extend it in the same way as above.



3

(4) During the extension in step (3), if the current branch can be extended by some used

k-mer in the current splicing graph, we identify a new bifurcation k-mer and modify current

splicing graph by merging k-1 overlapping nucleotides and adding one directed edge between

them (Figure F). Otherwise, the following criteria are used to check if this potential branch is

allowed to add to current splicing graph: (i) the branch is long enough (>=80 bp) to be an

exon (Figure G(i)); (ii) the branch is not similar with corresponding part of the trunk (Figure

G(ii)); (iii) there are at least two read pairs supporting this branch (Figure G(iii)).

Two paralogous genes can be separated by using paired-end read information (Figure

G(iv)). The new branch will not be added into current graph if we find a paired-end read with

one end (colored green) mapping to the branch and the other end mapping to outside of the

current graph (note that the red dash does not exist in current splicing graph). When we

construct the splicing graph of the red gene, the “hole” resulting from the first gene (black

gene) can be filled by used k-mers (The used k-mers are only allowed to be reused to fill such

holes).

(5) We grow the splicing graph by repeatedly finding the bifurcation k-mers, until no

bifurcation k-mer exists.

(6) We mark all used k-mers and trim edges induced from sequencing errors by the similar

criteria used in Trinity: (a) for each edge, there is a minimal number of reads (default 2)

perfectly match at least (k-1)/2 bases on each side of the junction. (b) The coverage of each

edge must exceed 0.04 times the average coverage of two franking nodes (twice the

sequencing error rate in a read, the upper bound is about 2%). (c) If there is a node with

several outgoing edges, each one of them should have a read support more than 5% of the

total outgoing reads. (d) Any outgoing edge has a support more than 2% of the total incoming

reads. Edges in splicing graph that does not meet any one of these criteria are removed.

Splicing graphs with less than minimum number of k-mers are discarded (an empirical

value used by Trinity is 300-(k-1) =276). For non-strand specific RNA-seq data, both k-mer

and the reverse-complemented k-mer are considered in building the hash table, extending the

splicing graph. A splicing graph is a compacted directed acyclic graph, and ideally each node,

which is a fragment of sequence, corresponds to one exon and each edge represents one

junction.

Note that the splicing graphs constructed here cannot be obtained by a contracted de

Bruijn graph. One example showing their differences can be found in Figure H. In addition,

the de Bruijn graph usually suffers a problem that the first graph built from the hash table is

very huge because many genes are mixed together by sharing their k-mers. However, the

splicing graphs constructed here could keep their size smaller by using paired-end read

information to check if a new branch should be added, which makes finding transcripts from

the graph much easier.



4

Splicing graphs provide a natural and lossless representation of all the (alternatively)

splicing isoforms in a transcriptome, with each node corresponding to one exon and each edge

representing one splicing junction, where a splicing event between two exons takes place. By

analyzing the structure of splicing graphs, we discovered that full-length transcripts would be

better recovered from combinations of spliced junctions than of exons and that the

transcriptome of a gene would be better identified as a constrained minimum edge-path-cover

over the splicing graph than simply a minimum edge-path-cover. Thus we model the de novo

assembly problem as to find a constrained minimum edge-path-cover over a splicing graph, in

which way full-length transcripts would be precisely recovered almost without any loss of the

(alternatively) splicing isoforms in the transcriptome.

BinPacker sorts nodes of a splicing graph and detects a maximal set of pairwise

incompatible edges

Two directed edges in a splicing graph are said to be compatible if they may come from one

directed path, and incompatible otherwise. As shown in Figure I, edges 1 and 2 may clearly

come from the same directed path, so they are compatible. For edges 1 and 3, they may be in

the path: node 1→node 3→node 4→node 6, so they are also compatible. While for edge 2

and edge 3, there is no directed path passing both of them, so they are incompatible. We may

imagine that the splicing graphs one-to-one correspond to the expressed genes, with nodes

corresponding to exons and edges corresponding to splicing junctions. Since exons are

linearly arranged in a gene we may suppose that the nodes in the splicing graph of the gene

are all arranged linearly by topology ordering of the nodes of the splicing graph, but not

necessarily identical to the gene. After topology ordering, all nodes with only out-edges are

moved to the leftmost of the graph and all nodes with only in-edges to the rightmost.

From now on, we call a splicing graph arranged up by the algorithm above a canonical

splicing graph. Therefore, each directed edge in a canonical splicing graph goes in the

direction of the gene to which the splicing graph corresponds and each edge is assigned to a

weight by the sequencing depth (number of reads spanning the junction edge in the splicing

graph) of the junction to which the edge corresponds. A directed edge e is said to cross two

consecutive nodes ni and ni+1 if its tail is in the left of node ni (including node ni) and its head

is in the right of node ni+1 (including node ni+1). As shown in Figure J, the edges 1, 2 and 3 all

cross the two consecutive nodes 3 and 4. Obviously, edges crossing two consecutive nodes

must be pairwise incompatible. Two edges being incompatible means that they are not

reachable from each other.

Theorem 1 The maximum set of edges crossing two consecutive nodes in a canonical

splicing graph must be a maximal set of pairwise incompatible edges.

Proof Let I be a maximum set of edges crossing the two consecutive nodes ni and ni+1.

Assume to the contrary that I is not a maximal set of pairwise incompatible edges. Then there



5

is an edge e which is not in I and not reachable from any edges in I. Assume without loss of

generality that the edge e locates at the right site of ni+1, i.e., e=(ns, nt) with s≥i+1. The

unreachability of e from I implies that the node ns has no in-edges. It follows from the

construction of a canonical splicing graph that all the nodes before ns have no in-edges.

Therefore all the edges in I have to pass the consecutive nodes ns and ns+1, a contradiction to

the hypothesis that I is a maximum set of edges crossing two consecutive nodes in the

canonical splicing graph. □

BinPacker executes bin packing

BinPacker iteratively calls a variant of bin packing model to comb all the transcripts encoded

in a splicing graph. To do so, we add a source node s and a sink node t into the splicing graph,

and connect s to the nodes with only out-going edges, and connect all the nodes with only

in-coming edges to t. The weight of the new edge connecting s and u is defined to be the sum

of the weights of the edges going out from u. Similarly, the new edges going to t can be

weighted.

Step 1. Balancing splicing graphs. Let u be a node in a splicing graph, and the sum of the

weights of the in-edges of u is said to be in-weight of u, denoted by win(u). Out-weight of u is

defined similarly, denoted by wout(u). Due to the existence of noises to the RNA-seq data, it is

difficult to have an exact balance between win(u) and wout(u) for any node u. When the

difference between win(u) and wout(u) is relatively small, it is rationale for us to believe that

the difference would be caused by noises. However, if the difference between win(u) and

wout(u) is significant, we would prefer that the node u is supposed to be an end of a transcript.

The problem is how big the difference between win(u) and wout(u) is qualified to be significant?

Here we provide concrete examples to demonstrate that the significance of difference between

win(u) and wout(u) relies on the magnitude of both win(u) and wout(u). As an example where

win(u) = 1 and wout(u) = 11 with their difference being 10, it is rationale for us to say that the

difference between win(u) and wout(u) is significant. However, we cannot say anything if win(u)

= 1000 and wout(u) = 1010 even though the difference is also 10. We further tried to measure it

using the ratio wout(u)/win(u) (or win(u)/wout(u)), and found that it does not work either. For

example, both win(u) = 1000, wout(u) = 1500 and win(u) = 2, wout(u) = 3 have their ratio 1.5, but

then we would prefer the former having a significant difference other than the latter.

Therefore, only the difference or ratio between win(u) and wout(u) is not enough to guarantee

whether or not the node u would be an end of a transcript.

The above observations imply that the significance of the difference between win(u) and

wout(u) depends on both their ratio and the minimum one of them. The smaller wmin =

min{win(u), wout(u)} is, the bigger we need the ratio wout(u)/win(u) (or win(u)/wout(u)) to be to

guarantee the significance. So we define a threshold c as an inverse proportional function

c=k/wmin+b of wmin such that the node u is expected to be an end of some transcript only if



6

either wout(u)/win(u) ≥c or win(u)/wout(u) ≥c. We also call such a node to be significant. For

each significant node u, we add a new edge with weight wout(u)-win(u) from the source s to the

node u if wout(u)/win(u) ≥c, or a new edge with weight win(u)-wout(u) from the node u to the

sink t if win(u)/wout(u) ≥c.

To determine the parameters k and b, we should set the asymptote y=β and specify a point

(α, γ) on the function curve. The asymptote y=β means that the ratio wout(u)/win(u) (or

win(u)/wout(u)) can never be lower than β if node u is significant. The point (α, γ) on the

function curve indicates that if wmin is α then the ratio wout(u)/win(u) (or win(u)/wout(u)) is at

least γ to ensure that node u is significant. After the parameters α, β and γ are specified, we

have that c=α(γ-β)/wmin+β.

To set default values for α, β and γ, we optimize them by cross-validation strategy on

simulated RNA-seq datasets with different numbers of reads and different lengths of reads.

The final selected values are α=10, β=1.4 and γ=1.5. To test the robustness of these

parameters, we conducted two experiments on both real and simulated datasets. In each

experiment, we did some variations on these parameters and compute their sensitivity,

assembled true positive rate and reference true positive rate, respectively. Figure K shows the

results for real mouse data and Figure L for the simulated human data. We are convinced from

the results that the default values for the three parameters α, β and γ are reasonable for

different RNA-seq datasets because they show significant robustness around the default

values. Figure M shows the implementation of the parameters.

Step 2. Iterations of the bin packing. Iteration details have been presented in the main

article, where it mentions that a trap node may occur in two cases as follows. i) The maximal

set I of pairwise incompatible edges is not maximum. As shown in Figure N(i), the set I

contains edges 3, 4 and 5, crossing the two consecutive nodes 4 and 5. Obviously, I is not

maximum because the edges 1, 2, 3 and 4, colored purple in Figure N(i), form the maximum

set of pairwise incompatible edges. When BinPacker processes node 3, it encounters the case

m > n (m = 2 and n = 1). ii) Locally seeking the optimality, BinPacker may encounter the

situation of m > n because it tends to pack more items into a bin with larger capacity as well

as pack fewer items into those bins with smaller capacity. See Figure 14B as an example,

three items 3, 4 and 5 need to be packed into bins 1 and 2 when BinPacker processes node 5.

If two items (items 3 and 5) are packed into bin 1 and only one (item 4) into bin 2, then we

have m = 2 and n = 1 at node 4 (m > n). The packing strategy of BinPacker is reasonable

because the capacity of bin 1 is larger than that of bin 2, which indicates that bin 1 should get

more items than bin 2. If the strategy of BinPacker is that only one item is packed into bin 1

and another two into bin 2, then BinPacker will finally get the minimum path cover of the

splicing graph. According to the sequencing depths of the junctions, items 3 and 5 should be

packed into bin 1, and item 4 into bin 2. And when processing node 4, the item 4 packed into



7

bin 2 is replaced by two new items 6 and 7, with sizes 8 and 12. However, if we are forced to

pack two items into bin 2 and another one into bin 1, we can see from the splicing graph that

any packing strategies are not reasonable because the size of bin 2 is much smaller and only

item 4 suits its size.

Theorem 2 The nodes previously processed will never be trapped again.

Proof The correctness of the theorem can be easily seen from the second constraint of

quadratic programming (2) in the main article.□

Step 3. Bin packing by 0-1 quadratic programming. See the main article for details.

Step 4. Transformation into 0-1 ILP. It is proved by theorem 3 that the 0-1 quadratic

programming in the main article can be equivalently transformed into a 0-1 linear

programming by introducing a new variable xijik for each quadratic term xij·xik (or xik·xij) in the

objective function along with the constraints as follows:

















nkjmix
nkjmixxx

nkjmixx
nkjmixx

ijik

ijikikij

ikijik

ijijik

1,,1}1,0{
1,,1,1

1,,1,
1,,1,







Theorem 3 The transformed 0-1 integer linear programming is equal to the original 0-1

quadratic programming.

Proof Denote by P the original 0-1 quadratic programming and by Q the transformed 0-1

integer linear programming. We prove that there is a one-to-one mapping f from the set of P's

feasible solutions to that of Q's, and that in this mapping f, any feasible solution x of P has the

same value of objective function as that of Q with the solution x' = f(x).

For any solution x of P, x' = f(x) is defined as follows. In x', we define x'ij to be xij in x. For

x'ijik, we define x'ijik =1 if x'ij = x'ik= 1, and x'ijik = 0 otherwise. Clearly, x' is a feasible solution

of Q. If x' = f(x), y' = f(y) and x' = y', which means that xij = x'ij = y'ij= yij, so it is clearly that x

= y. On the other hand, under the added constraints, for any feasible solution x' of Q, we can

define a variable x with xij = x'ij, and x is clearly a feasible solution of P and f(x) = x', which

means that for any feasible solution x' of Q there is a feasible solution x of P such that f(x) = x'.

This suggests that f is a one-to-one mapping from the feasible solution of P to that of Q.

Suppose that x is a feasible solution of P and x' = f(x) is the corresponding solution of Q.

The value of the objective function of P at x is zP, and that of Q at x' is zQ. From the definition

of the mapping f we have that xij = x'ij and xij·xik = x'ijik for any i, j, k. We have proved that

zP=zQ, i.e., the 0-1 integer linear programming Q is equivalent to the original 0-1 quadratic

programming P.□

BinPacker recovers an optimal set of full-length transcripts

Detailed steps of recovering an optimal set of full-length transcripts from the solutions of the



8

0-1 ILPs have been presented in the main article.

3. Supplementary Experiment

3.1 Tests on E.coli dataset

The E.coli dataset is adopted to evaluate the performance of the de novo assemblers on low

complexity genome species without alternative splicing events. The E.coli data was collected

from NCBI SRA database (Accession Code: SRR1931680). The criteria for evaluating the

assemblers on the E.coli dataset are identical to what were used in the main article.

The sensitivities of BinPacker, Trinity and Bridger, which respectively recover 1452, 1437

and 1467 full-length transcripts out of 29975, 59576 and 46594 candidates, are higher than

the other assemblers, except SOAPdenovo-Trans, which recovered 1560 full-length

transcripts out of 160465 candidates (Figure A(i), shaded area) but at the cost of getting more

false positives. For the accuracy, BinPacker performs much better than all the other

assemblers in terms of both types of accuracy (Figures A(ii), A(iii), shaded area). IDBA-Tran

performs very well in terms of reference true positive rate, even better than Trinity and

Bridger, but it performs worse than Trinity and Bridger in terms of assembled true positive

rate.

We also compute the sensitivity and accuracy distributions against recovered sequence

length rates ranging from 80% to 100%. For the sensitivity distribution, the three curves of

BinPacker, Bridger and Trinity are almost coincident with the highest sensitivity among all de

novo assemblers, except SOAPdenovo-Trans, which outputs the most false positives (Figure

A(i)). BinPacker keeps the highest accuracy for both types of accuracy in the whole interval

[80%, 100%] (Figures A(ii), A(iii)). Therefore, we conclude from the comparison results that

BinPacker is most stable as well on low complexity genome species without alternative

splicing isoforms.

The computing resources, including running time and memory usage, were compared

among the assemblers on the same server (Figure B). As expected, ABySS uses the least

memory (Figure B(ii)), while SOAPdenovo-Trans takes the shortest time (Figure B(i)). As an

exhaustive enumeration algorithm, Trinity consumes the largest memory and longest running

time. BinPacker and Bridger require almost same memory, a little more than most of

compared assemblers, but much less than Trinity (Figure B(ii)). As for the running time,

BinPacker is faster than all assemblers but Oases and SOAPdenovo-Trans.

3.2 Tests on simulated dataset

The criteria for matching against reference transcripts on simulated dataset are identical to

those explained in the main article.

3.2.1. Comparison of sensitivities and their distributions against recovered sequence

length rates



9

Running all the eight de novo assemblers on the simulated dataset, we found that BinPacker

reaches the highest sensitivity, recovering 7519 full-length transcripts from 21999 candidates,

while Trinity recovers 7244 from 26924 and Bridger recovers 7014 from 21347. The rest of

the assemblers all perform worse than any of the three (Figure 4A, shaded area). Trinity

performs worse than BinPacker because Trinity uses an exhaustive enumeration algorithm to

search for paths in de Bruijn graphs without using sequencing depth information in the

searching process, which results in the increase of false positives and the decrease of true

positives. Bridger performs worse than BinPacker is due to the facts: 1) the weights in the

compatibility graph are defined a bit arbitrarily, and 2) a node with both in-edges and

out-edges in the splicing graph will never be an end of a transcript. Stringtie performs best,

outputting not only the largest number of full-length recovered reference transcripts but also

the smallest number of false positives, showing that the reference genome is indeed helpful in

transcriptome assembly.

To test the reliability of the de novo assemblers, we computed the sensitivity distributions

against recovered sequence length rates ranging from 80% to 100%. As shown in Figure 4A,

among the de novo assemblers, BinPacker keeps the highest sensitivity on the whole interval

[80%, 100%]. Trinity and Bridger perform worse than BinPacker, but better than most of the

other assemblers in the interval [90%, 100%] (Figure 4A). Therefore, we conclude from the

comparison results among sensitivity distributions that BinPacker is most reliable among all

the de novo assemblers we are comparing with.

3.2.2. Comparison of accuracies and their distributions against recovered sequence

length rates

Comparison results demonstrate that BinPacker outperforms all the other de novo assemblers

we are comparing with in terms of both types of accuracy (Figures 4B, 4C, shaded area).

Among the other assemblers, Trinity reaches the highest reference true positive rate, while

Bridger reaches the highest assembled true positive rate. Trans-ABySS performs better than

ABySS for the reference true positive rate, but worse in terms of assembled true positive rate

as it assembles more false positives. As expected, Stringtie has the highest accuracy of both

types.

To test the reliability of these de novo assemblers, we computed the accuracy distributions

against recovered sequence length rates ranging from 80% to 100%. As shown in Figures 4B

and 4C, BinPacker keeps the highest accuracy in the whole interval [80%, 100%] among the

de novo assemblers. For the other assemblers, Trinity reaches the highest reference true

positive rate in the interval [90%, 100%], while Bridger shows the highest assembled true

positive rate in the whole interval [80%, 100%].

Therefore we conclude that BinPacker is most reliable among all the de novo assemblers

we are comparing with.



10

4. Installation and Usage Instructions of BinPacker

4.1 Installation from source code

1) Installing Boost

a) Download a version of boost and unpack it.

$ tar zxvf boost_1_47_0.tar.gz

b) Change to the boost directory and run ./bootstrap.sh.

$ cd boost_1_47_0

$ ./bootstrap.sh

c) Run

$ ./b2 install --prefix=<YOUR_BOOST_INSTALL_DIRECTORY>

Note: The default Boost installation directory is /usr/local. Take note of the boost installation

directory, because you need to tell the BinPacker installer where to find boost later on.

2) Building BinPacker

a) Unpack the BinPacker and change to the BinPacker directory.

$ tar zxvf BinPacker_1.0.tar.gz

$ cd BinPacker_1.0

b) Configure BinPacker. If Boost is installed somewhere other than /usr/local, you will

need to tell the installer where to find it using --with-boost option.

$ ./configure --with-boost=/path/to/boost/

c) Make BinPacker.

$ make

4.2 Quick installation

In order to make the BinPacker software more user-friendly and simpler to install, we have

integrated the boost library and GLPK into our BinPacker software package. So users can

install BinPacker through BinPacker_binary.tar.gz as follows.

a) Unpack the BinPacker and change to the BinPacker directory.

$ tar zxvf BinPacker_binary.tar.gz

$ cd BinPacker_binary

b) Make BinPacker.

$ ./update

4.3 Usage of BinPacker

** Required **

-s <string>: type of reads: ( fa, or fq ).

-p <string>: type of sequencing: ( pair or single ).

If paired_end reads:

-l <string>: left reads.



11

-r <string>: right reads.

If single_end reads:

-u <string>: single reads.

** Options **

-o <string>: name of directory for output, default: ./BinPacker_Out_Dir/

-m <string>: strand-specific RNA-Seq reads orientation, default: double_stranded_mode.

if paired_end: RF or FR;

if single_end: F or R.

-k <int>: length of kmer, default:25.

-g <int>: gap length of paired reads, default: 200.

-S <int>: minimum coverage of kmer as a seed, default: 2.

-E <float>: minimum entropy of kmer as a seed, default: 1.5.

-C <int>: minimum coverage of kmer used to extend, default: 1.

-N <float>: minimum entroy of kmer used to extend, default: 0.0.

-J <int>: minimum of the coverage of a junction, default: 2.

-v: report the current version of BinPacker and exit.

** Note **

A typical command of BinPacker might be:

BinPacker -s fq –p pair -l reads.left.fq -r reads.right.fq

(If your data are strand-strand, it is recommended to set -m option.)

4.4 Test the installation

Test data are provided with software distribution in the sample_test directory.

$ ./runMe.sh

5. Supplementary Figures

Figure A. Comparison among assemblers on E.coli dataset. (i) Recovered reference

sensitivity and its distribution against recovered sequence length rates. The solid colored



12

circles in shaded areas represent the number of full-length recovered reference transcripts for

different assemblers; (ii) Reference true positive rate and its distribution against recovered

sequence length rates. The solid colored circles in shaded area represent the reference true

positive rate for different assemblers; (iii) Assembled true positive rate and its distribution

against recovered sequence length rates. The solid colored circles in shaded area represent the

assembled true positive rate for different assemblers.

Figure B. Running time and RAM usage for each assembler on E.coli RNA-seq dataset. (i)

running time of each assembler; (ii) memory usage of each assembler.

Figure C. Flowchart of BinPacker. (i) The algorithm takes RNA-seq reads (single or

paired-end) to assemble splicing graphs, each of which provides a complete representation of

all alternative splicing transcripts for each locus. (ii-iv) Each splicing graph is processed



13

independently. (ii) Each edge in a splicing graph represents one splice junction. (iii) A

canonical graph, based on which the packing model is employed. (iv) A packing is applied to

recover an optimal set of transcripts that could be tiled together through overlapping sequence

reads and “explain” all observed junctions in a splicing graph.

Figure D. Examples of splicing events and corresponding splicing graphs. (i) Exon skipping.

Each node of a splicing graph is an actual exon. (ii) Alternative splicing sites. In the splicing

graph of this case, two nodes (node 1 and node 2) correspond to one exon (the left one) of the

gene (the vertical dash line shows the boundary). (iii) Intron retention. The possibly retended

intron is represented as node in its splicing graph (e.g. node 2 in this example).

Figure E. Paired-end read information is used for constructing a complete trunk of the

splicing graph. When the contig cannot be extended by overlapping k-mers, BinPacker (i)

collects all paired-end reads with one end mapping the terminus of the contig and the other

end mapping outside and (ii) generates a new contig starting from the end mapping outside of

the current contig. Then these two contigs can be connected into a longer one.



14

Figure F. Splicing graph construction. (i) Splicing graph after branch extension. The red

k-mer (k=5) ATCAG on the left is a bifurcation 5-mer because there is an unused 5-mer

TCAGC in the hash table that provides an alternative extension. Extend this 5-mer to a new

contig until it cannot be further extended. We check the last 4-mer of this branch to see if

there is a matching 4-mer in the current splicing graph. If so, another bifurcation 5-mer is

found (e.g. the red 5-mer CTAGC). (ii) A modified splicing graph by merging the k-1

overlapping nucleotides (4-mer CTAG) and adding a new directed edge between two

bifurcation k-mers.

Figure G. Criteria used to decide if one potential branch is allowed to be added into the

current splicing graph. (i) A branch must be long enough. If not, ignore it. (ii) A branch must

be different from the corresponding part of the trunk. If not, ignore it. (iii) A branch that

meets (i) and (ii) is allowed to be added into the graph if there exist at least two paired-end

reads supporting it. (iv) Two paralogous genes, colored with red and green respectively, can

be separated by paired-end read information.



15

Figure H. One example shows that the splicing graph is different from contracted de Bruijn

graph. (i) gene structure with two isoforms, (ii) de Bruijn graph, (iii) contracted de Bruijn

graph, (iv) splicing graph.

Figure I. An example shows compatible edges and incompatible edges in a canonical splicing

graph, whose nodes are arranged linearly similar to a gene. In this graph, edge 1 and edge 2,

edge 1 and edge 3, are compatible edges, while edge 2 and edge 3 are incompatible edges.

Figure J. An example shows the set of edges crossing two consecutive nodes. In this splicing

graph, the edges crossing two consecutive nodes 3 and 4 are edge 1, edge 2 and edge 3.

Figure K. Robustness analysis on real mouse dataset.

Figure L. Robustness analysis on simulated human dataset.



16

Figure M. Image of threshold c and its corresponding parameters α, β and γ.

Figure N. Examples show the two cases leading to the occurrence of trap nodes. (i) The

maximal set {edge 3, edge 4, edge5} is not maximum, while set {edge 1, edge 2, edge 3, edge

4} is. (ii) The numbers in parentheses represent the weights (sequencing depths) of the edges.

We can see that items 3 and 5 should be packed into bin 1 and item 4 into bin 2. And when

processing node 4, the item 4 packed into bin 2 is replaced by two new items 6 and 7, with

sizes 8 and 12.

4. Supplementary Tables

Table A. Comparison of different RNA-seq assembly methods on dog data.

Method Candidate

transcripts

Full-length reconstructed

reference transcripts

>= 80% length

reconstructed reference

transcripts

ABySS 29842 853 1386

Oases 47896 956 1545

Trinity 49311 1091 1657

BinPacker 33665 1149 1718

IDBA-Tran 32057 922 1524

SOAPdenovo-Trans 58842 930 1337

Cufflinks 60814 1498 4801



17

Table B. Comparison of different RNA-seq assembly methods on human data.

Method Candidate

transcripts

Full-length reconstructed

reference transcripts

>= 80% length

reconstructed reference

transcripts

ABySS 36132 709 3791

Oases 60363 2424 9050

Trinity 54315 6122 14509

BinPacker 41691 5859 14328

IDBA-Tran 31095 3353 11606

SOAPdenovo-Trans 76611 1908 6740

Cufflinks 68067 7066 16915

Table C. Comparison of different RNA-seq assembly methods on mouse data.

Method Candidate

transcripts

Full-length reconstructed

reference transcripts

>= 80% length

reconstructed reference

transcripts

ABySS 21993 4928 9701

Oases 42104 6941 13811

Trinity 78333 9599 15807

BinPacker 39060 10012 16270

IDBA-Tran 43717 3987 9098

SOAPdenovo-Trans 170830 2496 8552

Cufflinks 25108 8900 15341

Table D. Comparison of the number of recovered reference against recovered sequence length

rates on dog data.

Method BinPacker ABySS Trinity Oases IDBA-Tran SOAPdenovo-Trans Cufflinks

100% 636 427 610 517 480 536 685

99% 818 561 777 668 619 667 865

98% 919 659 871 754 708 751 990

97% 1005 734 949 830 789 824 1135

96% 1088 802 1031 898 866 883 1323

95% 1149 853 1091 956 922 930 1498

94% 1204 913 1148 1010 977 989 1672



18

93% 1260 954 1199 1060 1034 1029 1890

92% 1326 1011 1256 1121 1088 1067 2109

91% 1368 1044 1298 1164 1137 1104 2316

90% 1407 1088 1343 1201 1183 1130 2542

89% 1447 1124 1388 1247 1224 1159 2733

88% 1488 1155 1426 1286 1263 1181 2985

87% 1525 1197 1460 1327 1313 1213 3192

86% 1557 1220 1484 1357 1352 1237 3389

85% 1586 1248 1515 1391 1383 1254 3598

84% 1615 1284 1537 1423 1410 1270 3843

83% 1646 1312 1569 1462 1444 1289 4091

82% 1673 1344 1601 1489 1472 1308 4323

81% 1695 1369 1623 1513 1499 1325 4574

80% 1718 1386 1657 1545 1524 1337 4801

Table E. Comparison of the number of recovered references against recovered sequence

length rates on human data.

Method BinPacker ABySS Trinity Oases IDBA-Tran SOAPdenovo-Trans Cufflinks

100% 2616 287 2853 961 1189 721 3479

99% 3518 363 3718 1220 1572 944 4544

98% 4197 424 4432 1489 1975 1182 5316

97% 4742 503 4990 1770 2363 1411 5916

96% 5288 598 5522 2062 2808 1647 6486

95% 5859 709 6122 2424 3353 1908 7066

94% 6383 843 6638 2791 3864 2214 7617

93% 6942 1006 7171 3183 4385 2516 8214

92% 7485 1158 7725 3549 4891 2841 8810

91% 8068 1302 8294 3960 5476 3213 9449

90% 8644 1475 8856 4420 6046 3544 10108

89% 9173 1677 9348 4828 6582 3850 10782

88% 9734 1850 9924 5327 7150 4143 11451

87% 10294 2078 10493 5725 7726 4493 12124

86% 10836 2300 11029 6167 8230 4789 12717

85% 11411 2534 11581 6643 8781 5093 13430



19

84% 12016 2774 12169 7121 9330 5445 14139

83% 12550 2997 12738 7640 9894 5755 14794

82% 13141 3249 13333 8137 10472 6074 15498

81% 13728 3511 13910 8608 11050 6407 16213

80% 14328 3791 14509 9050 11606 6740 16915

Table F. Comparison of the number of recovered references against recovered sequence

length rates on mouse data.

Method BinPacker ABySS Trinity Oases IDBA-Tran SOAPdenovo-Trans Cufflinks

100% 5331 1408 5222 2563 1290 744 3984

99% 7362 2780 7174 3708 2251 959 6095

98% 8196 3530 7961 4608 2741 1191 7080

97% 8819 4050 8520 5455 3177 1576 7740

96% 9431 4506 9085 6231 3613 2021 8357

95% 10012 4928 9599 6941 3987 2496 8900

94% 10539 5341 10063 7578 4400 2994 9416

93% 11024 5714 10514 8214 4762 3479 9895

92% 11496 6088 10947 8771 5115 3955 10360

91% 11939 6436 11357 9251 5483 4388 10828

90% 12403 6790 11799 9790 5860 4839 11283

89% 12825 7149 12220 10281 6218 5277 11755

88% 13247 7458 12654 10715 6554 5673 12160

87% 13671 7779 13061 11162 6893 6083 12611

86% 14065 8077 13449 11543 7216 6452 13012

85% 14436 8344 13826 11924 7524 6832 13423

84% 14823 8624 14224 12316 7830 7176 13786

83% 15183 8907 14629 12709 8152 7518 14174

82% 15556 9186 15033 13087 8483 7867 14567

81% 15901 9428 15418 13455 8790 8211 14952

80% 16270 9701 15807 13811 9098 8552 15341

1. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. (2011) Full-length

transcriptome assembly from RNA-Seq data without a reference genome. Nat



20

Biotechnol 29: 644-652.

2. CE S (1951) Prediction and entropy of printed English. Bell system technical journal:

50-64.


	Supplementary Material for the Paper
	BinPacker: Packing-based de novo Transcriptome Ass
	1.  Supplementary Notes: parameter setup for the c
	2.  Supplementary Methods
	BinPacker constructs splicing graphs effectively a
	BinPacker sorts nodes of a splicing graph and dete
	BinPacker executes bin packing
	BinPacker recovers an optimal set of full-length t

	3.  Supplementary Experiment 
	4.  Installation and Usage Instructions of BinPack
	5.  Supplementary Figures
	4.  Supplementary Tables


