
Supplementary Information to:

Know the single-receptor sensing limit? Think again.

Gerardo Aquino1, Ned S. Wingreen2 and Robert G. Endres1

1Department of Life Sciences & Centre for Integrative

Systems Biology and Bioinformatics, Imperial College, London,

2Department of Molecular Biology, Princeton University,

Princeton, New Jersey 08544, USA

1



Contents

I. Berg-Purcell limit 3

II. Receptor with downstream signalling 4

III. Maximum-likelihood estimation without ligand rebinding 5

IV. Bayesian Cramér-Rao bound including a prior 7

A. Log-normally distributed prior 8

B. Gamma-distributed prior 10

V. Maximum-likelihood estimation with ligand rebinding 11

VI. Uncertainty and decision-making algorithms 15

VII. Neyman-Pearson lemma 16

VIII. Decision-making algorithms vs. Berg-Purcell limit 17

References 18

2



I. BERG-PURCELL LIMIT

Consider a receptor which binds and unbinds ligand molecules with kinetics for the av-

erage occupancy Γ(t) given by

dΓ

dt
= k+c0(1 − Γ) − k−Γ, (1)

where k+c0 is the rate of binding at ligand concentration c and k− is the rate of unbinding.

At steady state, the probability of being occupied is given by p = c0/(c0 + KD) with the

ligand dissociation constant KD = k−/k+.

What is the uncertainty 〈δc2〉 in measuring ligand concentration c0? If we have the

uncertainty in occupancy, 〈δΓ2〉, we can use error propagation and write for the relative

uncertainty in ligand concentration

〈δc2〉
c20

=

(
c
∂p

∂c

)−2

〈δΓ2〉 (2)

with the term in bracket evaluated at c0.

To obtain 〈δΓ2〉 we could be tempted to use the variance of a Bernoulli random variable,

given by p(1 − p). We would thus obtain 〈δc2〉/c02 = [p(1 − p)]−1 ≥ 4 and hence at least

400% fractional error. This instantaneous error based on a single measurement in time can

formally be derived as follows, which comes in handy later. Equation 1 can be linearised

around the steady-state value by introducing Γ(t) = p + δΓ(t) with δΓ(t) the fluctuations

and keeping only terms linear in δΓ(t). This produces

d(δΓ)

dt
= −(k+c0 + k−)δΓ + ηΓ (3)

with ηΓ(t) the fluctuating source, given by white noise with zero average. (That such a

linearization is valid for underlying binary dynamics was shown in [1].) Subsequent Fourier

transformation from the time to the frequency domain leads to

−iωδΓ̂ = −(k+c0 + k−)δΓ̂ + η̂Γ, (4)

where we applied the Fourier transforms Γ(t) =
∫

dω
2π
e−iωtδΓ̂(ω) and ηΓ(t) =

∫
dω
2π
e−iωtδη̂Γ(ω).

The power spectrum is then obtained as

〈δΓ̂(ω)δΓ̂∗(ω)〉 = 〈|δΓ̂2(ω)|2〉 =
QΓ

λ2
Γ + ω2

(5)
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with noise strength QΓ = 〈|η̂Γ(ω)|2〉 = 2k+c0(1 − p) determined from Poisson statistics

and frequency cut-off λΓ = k+c0 + k−. The variance is obtained by integrating the power

spectrum over all frequencies

〈δΓ2〉 =

∫
dω

2π
〈|δΓ̂(ω)|2〉 =

QΓ

2λΓ

= p(1 − p). (6)

In contrast, Berg and Purcell (BP) considered that the receptor has some time T available

in order to produce a measurement. We expect the longer the averaging time the more

accurate the measurement. Imagine a binary time series of occupancy Γ(t) recorded for time

T . The BP limit can be derived by estimating the average receptor occupancy p from the

time-averaged value ΓT = 1/T
∫
dtΓ(t) with the variance given by 〈δΓ2

T 〉 = 〈Γ2
T 〉 − 〈ΓT 〉2.

The variance can be determined from the autocorrelation function of the occupancy, or

equivalently the power spectrum. Specifically, the uncertainty of the occupancy δΓ2
T can be

calculated by using the low-frequency limit of Eq. 5

〈δΓ2
T 〉 =

〈|δΓ̂(ω ≈ 0)|2〉
T

=
2p2(1 − p)

k+c0T
. (7)

When plugged into Eq. 2, this reproduces the BP limit

〈δc2〉
c20

=
2τb
Tp

=
2

N̄
(8)

with the average number of binding/unbinding events given by N̄ = T/(τb+τu) with τb = k−1
−

and τu = (k+c0)
−1 the average bound and unbound time intervals.

II. RECEPTOR WITH DOWNSTREAM SIGNALLING

In addition to the receptor, let us consider a signalling molecule that is produced by the

ligand-bound receptor, characterised by occupancy Γ(t). The kinetics for the copy number

n(t) of this signalling molecule is given by

dn

dt
= kΓ − τ−1n, (9)

where k times Γ is the rate of production and τ is the lifetime of the signalling molecule.

At steady state, the copy number is given by n̄ = kτp. Using error propagation once more,

we can write
〈δc2〉
c20

=

(
c
∂n̄

∂c

)−2

〈δn2〉 (10)
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with the term in parentheses evaluated at c0. The error based on time averaging by T can be

derived as before. Equation 9 can be linearised by introducing n(t) = n̄+ δn(t), producing

d(δn)

dt
= kδΓ − τ−1δn+ ηn (11)

with ηn(t) the fluctuating source, given again by white noise with zero average. Subsequent

Fourier transforming from the time to the frequency domain leads to

(τ−1 − iω)δn̂ = kδΓ̂ + η̂n, (12)

where we applied the additional Fourier transforms n(t) =
∫

dω
2π
e−iωtδn̂(ω) and ηn(t) =∫

dω
2π
e−iωtδη̂n(ω). The power spectrum is then obtained as

〈|δn̂2(ω)|2〉 =
Qn

τ−2 + ω2
+

QΓk
2

(τ−2 + ω2)(λ2
Γ + ω2)

(13)

with noise strength Qn = 〈|η̂n(ω)|2〉 = 2kp determined from Poisson statistics. The variance

is obtained by calculating the time-averaged low-frequency limit

〈δn2
T 〉 =

〈|δn̂(ω ≈ 0)|2〉
T

= 2n̄

[
1 +

n̄(1 − p)

k+c0τ

]
τ

T
. (14)

When plugged into Eq. 10, this produces the following limit

〈δc2〉
c20

=

[
2

N̄τ

+
2

n̄(1 − p)2

]
τ

T
=

2

N̄
+

2

n̄(1 − p)2

τ

T
(15)

with N̄τ = τ/(τb+τu) the average number of ligand binding/unbinding events in time interval

τ and N̄ the average number in time T . The first term in Eq. 15 is the BP limit (cf. Eq.

8). The second term in Eq. 15 is due to Poisson-like number fluctuations in the signalling

molecule and could be reduced for large numbers of signalling molecules. Hence the best

one can do with an equilibrium receptor is the BP limit.

III. MAXIMUM-LIKELIHOOD ESTIMATION WITHOUT LIGAND REBIND-

ING

LetN be a fixed number of subsequent bound and unbound time intervals (not the average

number N̄ here), the probability (likelihood) for such a sequence of intervals �τ = (τ1, · · · τN)

is:

P (�τ , c) ∝ e−k−Tbe−k+cTukN
− (k+c)

N , (16)
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where Tb =
∑N

i=1 τ
i
b and Tu =

∑N
i=1 τ

i
u are the total bound and unbound times (with Tb �

N〈τu〉 and Tu � N〈τu〉 for N large). Maximising with respect to c leads to:

dP

dc
= −k+TuP +

N

c
P = 0 → cML =

N

k+Tu

, (17)

i.e. cML is the concentration value that maximises the likelihood. The uncertainty in

concentration measurement can be obtained from the Cramér-Rao bound which connects

the uncertainty in concentration to the Fisher information.

Assume a set of measurements �τ distributed according to P (�τ , c) from which an unbiased

estimation of the concentration c0 is performed. In general it can be shown that given a set

of measurements the variance for the expected value of c is bound from below by the Fisher

information, i.e.

〈δc2〉 = 〈(ĉ− c0)
2〉 ≥ 1

I(c0)
, (18)

with ĉ the estimated value of the true concentration c0 and the Fisher information I(c)

defined as:

I(c) = −
∫
d�τ
∂2 logP (�τ , c)

∂c2
P (�τ , c) (19)

Using Eq. (16) it follows that

−∂
2 logP (�τ , c)

∂c2
=
N

c2
, (20)

which, when inserted in Eq. (19), leads to I(c) = N/c2. In the large-N limit the Cramér-Rao

bound becomes an equality and translates into the following expression for the uncertainty

in concentration sensing at c0:

〈δc2ML〉
c20

=
1

c20I(c0)
=

1

N
. (21)

This result is two-fold lower than the BP limit. The difference is that the maximum-

likelihood (ML) estimate considers only the unbound time intervals, as only these contain

information about the ligand concentration.

A few comments are in order: The exact expectation value for the estimator can easily

be derived from Eq. (17) leading to

〈cML〉 =
N

k+

〈
1

Tu

〉
. (22)

The probability density for the variable Tu =
∑N

i=1 τ
i
u, i.e. of having a sequence ofN unbound

time intervals, is the N -times convolution of the single probability density k+c0e
−k+c0τu ,
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namely

ψ(Tu) = (k+c0)
Ne−k+c0Tu

TN−1
u

(N − 1)!
(23)

from which it follows that〈
1

Tm
u

〉
=

∫ ∞

0

1

Tm
u

ψ(Tu)dTu =
(N − 1 −m)!

(N − 1)!
(k+c0)

m. (24)

From Eq. (24) one can easily derive 〈1/Tu〉 = k+c0
N−1

, which, by means of Eq. (22), leads to

〈cML〉 = c0
N

N − 1
. (25)

It follows that the estimator is unbiased (i.e. 〈cML〉 = c0) only in the asymptotic limit of

large N . The results obtained here and in the main text are consistent with this limit. From

Eq. (24) evaluated for m = 2 one can derive as well the variance for the ML estimator

〈δc2ML〉 = 〈c2ML − 〈cML〉2〉 =
N2

k2
+

〈
1

T 2
u

〉
− 〈cML〉2 =

c20
N − 2

(
N

N − 1

)2

�N�1
c20
N

+O(1/N2). (26)

It follows that the exact value for the bound on the variance of the ML estimator is
c20

N−2

(
N

N−1

)2
, which coincides with c20/N in the N � 1 limit apart from terms of order

O(N−2). The limit of large N is consistent with the assumption that Tu � k+c0, k− im-

plied in the integration carried out in Eq. (24). Note that one can also define the unbiased

estimator c′ML = N−1
N
cML for which (using Eq. (26)) one obtains a sharper bound on the

variance, given by 〈(δc′ML)2〉 = c20/(N − 2). In summary, by not using the peak value of

the likelihood but the mean value, we obtain an unbiased estimator with a slightly lower

uncertainty, i.e. 1/(N − 2) instead of 1/(N − 2)[N/(N − 1)]2.

IV. BAYESIAN CRAMÉR-RAO BOUND INCLUDING A PRIOR

Next we consider cells which preserve a memory of previous environmental conditions.

Specifically, the Bayesian Cramér-Rao bound [2–4] allows us to estimate a lower bound to

the variance of the expected value of an estimator when a prior distribution for such an

estimator is known. Let us call ĉ the unbiased estimator of the true concentration c0. Such

a parameter is estimated based on a set of measurements �τ distributed according to P (�τ , c).

If λ(c) is the known prior distribution of the parameter c0, then it can be shown that

〈δc2〉 = 〈(ĉ− c0)
2〉 ≥ 1

I(λ) + I(c0)
, (27)
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where averaging on the left-hand side is conducted using the prior distribution, leading to

the reduction in uncertainty on the right-hand side. Specifically,

I(λ) =

∫
dcλ(c)

[
∂ log λ(c)

∂c

]2

(28)

is the contribution to the Fisher information from the prior distribution and

I(c) =

∫
dcλ(c)

∫
d�τP (�τ , c)

[
∂ logP (�τ , c)

∂c

]2

= −
∫
dcλ(c)

∫
d�τP (�τ , c)

∂2 logP (�τ , c)

∂2c
(29)

is the Fisher information about the parameter c0 given the data �τ . The second equality in

Eq. (29) follows from the relation ∂2 log P (�τ,c)
∂2c

= P ′′
P

− P ′2
P 2 = P ′′

P
−

[
∂ log P (�τ,c)

∂c

]2

and that the

term P ′′
P

gives zero contribution as can be checked by differentiating with respect to c the

normalisation condition ∫
d�τP (�τ , c) = 1. (30)

A. Log-normally distributed prior

We first consider the case where the prior distribution has a log-normal form, i.e.:

λ(c) =
1

σ
√

2πc
exp

[
−(log(c) − µ)2

2σ2

]
(31)

with mean and variance in log-space given by 〈log(c)〉 = µ and 〈[log(c) − µ]2〉 = σ, respec-

tively. In linear space these are given by respective expressions

〈c〉 = exp
(
µ+ σ2/2

)
(32a)

〈c2 − 〈c〉2〉 = exp[2(µ+ σ2)] − exp
(
2µ+ σ2

)
= exp

(
2µ+ σ2

) [
exp

(
σ2

) − 1
]
. (32b)

Consequently, I(λ) is given by:

I(λ) =

∫
dcλ(c)

[
∂ log λ(c)

∂c

]2

=

∫
dc

c20

[
1

σ2
(log(c) − µ) + 1

]2

exp

[
−(log(c) − µ)2

2σ2

]

=

(
1

σ2
+ 1

)
exp

[−2(µ− σ2)
]

(33)

Furthermore, I(c) follows from Eq. (19) where P (�τ , c), the probability (likelihood) of observ-

ing a sequence �τ of N bound and unbound time intervals, is given by Eq. (16). Equations

(16) and (17) lead to the following expression for I(c):

I(c) =

∫
dc

∫
d�τP (�τ , c)

N

c2
λ(c). (34)
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Performing the integration in �τ due to the normalisation condition, we obtain:

I(c) =

∫
dc
N

c2
λ(c) = N exp[−2(µ− σ2)]. (35)

In conclusion, the uncertainty in ligand concentration with the Bayesian Cramér-Rao bound

and a log-normal prior is given by

〈δc2〉 ≥ exp[2(µ− σ2)]

N + 1/σ2 + 1
. (36)

In the following we deviate slightly from the derivation found in [5]. In this article the

prior was assumed to be centred around the true ligand concentration. Here, we assume

more conservatively that the prior distribution is centred around the (erroneous) ML value

cML of the concentration obtained from the previous measurement. The variance of the

distribution is again given by the standard Cramér-Rao bound from the ML estimation,

〈δc2ML〉 = c20/N [6] with c0 the true value for the concentration. From these assumptions it

follows that

〈c〉 = exp

[
µ+

σ2

2

]
= cML (37a)

〈c2 − 〈c〉2〉 =
(
exp(σ2) − 1

) 〈c〉2 =
c20
N
, (37b)

where last equality follows from Eq. (21). We can now express σ2 in terms of known

quantities, noticing that, for large number of events N , from Eq. (37b) it follows:

exp[σ2] − 1� 1

N
→ σ2� log

(
1 +

1

N

)
� 1

N
. (38)

Inserting this expression for σ2 into Eq. (36) leads to 〈δc2〉 ≥ c2MLe−3/N

N+1/N+1
and therefore to

〈δc2〉
c20

≥ 1

2N
, (39)

where c0 in the denominator is the true value of the concentration, which differs from cML

obtained from previous measurement by at most a correction proportional to c0/
√
N (due

to Eq. (21)), so that Eq. (39) is correct to leading order for N large, a result identical to

the one in [5].

Eq. (39) means that having a prior distribution for N intervals is the same as measuring

for 2N intervals without a prior distribution. Hence, information is neither lost nor gained.

This also means that by using memory (in the form of a prior) a cell can effectively per-

form longer and hence more accurate measurements without being limited by the actual

measurement (averaging) time.
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B. Gamma-distributed prior

Alternatively, assume the prior is given by the Gamma distribution

λ(c) =
cα−1γαe−γc

Γ[α]
, (40)

where the parameters α and γ are related to the first and second moment of the distribution:

〈c〉 =
α

γ
(41a)

〈c2 − 〈c〉)2〉 =
α

γ2
. (41b)

For such a prior distribution, I(λ) reads:

I(λ) =

∫ [
∂ log λ(c)

∂c

]2

λ(c)dc = (42)∫
λ′(c)2

λ(c)
dc =

∫ ∞

0

dc
e−γc(γc)α+1(α− 1 − γc)2

γc4Γ[α]
=

γ2

α− 2
.

The Fisher information I(c) is determined from Eq. (34) using the Gamma distribution

instead of the log-normal distribution

I(c) =

∫
dc

∫
d�τP (�τ , c)

N

c2
λ(c) = (43)∫

N

c2
λ(c)dc = Nγ2

∫ ∞

0

dc
cα−3e−γcγα−2

Γ[α]
=

Nγ2

(α− 1)(α− 2)
.

Consequently, the Bayesian Cramér-Rao bound is given by:

〈δc2〉 ≥ 1
γ2

α−2
+ Nγ2

(α−1)(α−2)

. (44)

With the same assumptions as done in the previous section, mean value and standard

deviation of the prior distribution are set to cML and c2ML/N , respectively (see Eqs. (37)),

with cML the ML value for the concentration obtained in previous measurement. Eqs. (41a)

and (41b) then imply:

γ =
N

cML

(45a)

α = N. (45b)

In the limit of large N , this leads to relative uncertainty

〈δc2〉
c20

≥ 1
N2

(N−2)
+ N3

(N−1)(N−2)

� 1

2N
, (46)
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with again c0 the true value of the concentration (cML � c0 ± c0/
√
N). Not surprisingly,

this is the same result as obtained in Eq. (39), since both the log-normal and the Gamma

distribution can be derived from Gaussian distributed variables. The Gamma distribution is

the distribution of the sum of squared normal variables (a.k.a.χ2 distribution), while the log-

normal, as the name suggests, is the distribution of the logarithm of a normally distributed

variable.

V. MAXIMUM-LIKELIHOOD ESTIMATION WITH LIGAND REBINDING

Endres and Wingreen [6] applied maximum likelihood (ML) to the problem of estimating

the ligand concentration from a time series of ligand-receptor occupancy, but focused on

the uncertainty of this measurement without ligand rebinding, i.e. effectively for very fast

diffusion. For slower diffusion one should consider possible rebinding of a previously bound

ligand molecule, which makes the instantaneous rate of binding a functional of the previous

binding and unbinding events. The binding rate can thus be written as k+c0(t, {t+, t−}).

The rate of unbinding remains k−, so the ML estimate of concentration still comes entirely

from the durations of the unbound intervals.

We quickly review ML estimation of the ligand concentration with ligand rebinding [6].

The probability for a time series to occur given a ligand concentration c0 is

P ({t+, t−}; c) =
∏

i

pb(t+,i, t−,i)p−(t−,i)pu(t−,i, t+,i+1)p+(t+,i+1), (47)

where the probability for a ligand molecule to remain bound from t+,i to t−,i is

pb(t+,i, t−,i) = pb(t−,i − t+,i) = e−k−(t−,i−t+,i). (48)

The probability for a receptor to remain unbound from t−,i to t+,i+1 includes the effect

on the binding of the changing concentration of ligand p+ ∝ k+(c0 + ∆ci) where ∆ci is

the perturbation to the ligand concentration from previous binding and unbinding events.

Consequently

pu(t−,i, t+,i+1) = e−k+c0(t+,i+1−t−,i)−k+

∫
i ∆c(t′)dt′ , (49)

where we have expressed the ligand concentration as

c(t, {t+, t−}) = c0 + ∆c(t, {t+, t−}) = c0 + ∆c({t− t−,i; t− t+,i}), (50)
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and used the notation
∫

i
dt′ =

∫ t+,i+1

t−,i
dt′, ∆c(t′) = ∆c(t′, {t+, t−}), and ∆ci = ∆c(t+,i).

The terms can be gathered as before, leading to

P ({t+, t−}; c) ∝ e−k−Tb · e−k+c0Tu · kN
− · kN

+ ·
∏

i

(c0 + ∆ci)e
−k+

∫
i ∆c(t′)dt′ . (51)

Importantly, all the ∆c’s depend only on the times of events, not the value of c0, so

d(∆c)/dc = 0, yielding
dP

dc
∝ −k+TuP +

∑
i

1

c0 + ∆ci
P. (52)

Setting the above derivative to zero yields an implicit equation for the ML estimate of c0,

∑
i

1

c0 + ∆ci
= k+Tu, (53)

where the sum is over all binding events. Importantly, each ∆ci depends deterministically

on all previous binding and unbinding events. For the special case of fast diffusion D = ∞
and hence ∆ci = 0, we obtain [6] k+c0 = N/Tu = 1/〈τu〉 where Tu is the total unbound time

of the receptor during time T , N is the total number of binding/unbinding events, and 〈τu〉
is the average unbound time interval.

How accurate is the concentration estimate? Using the Cramér-Rao bound once more,

we obtain for the normalised variance

〈δc2〉
c20

= − 1

c20

〈
d2 ln(P )

dc2

〉
c0

=
1

〈∑i(1 + ∆ci/c0)−2〉c0

, (54)

where we used P from Eq. 51. Hence, the normalised variance of the ML estimate of

the true concentration c0 is the inverse of the number of unbound intervals with additional

corrections in the regime of slow diffusion, due to perturbations in ligand concentration from

previous binding and unbinding events.

Equation 54 depends on the average over all trajectories with N binding and unbinding

events. Furthermore, each perturbation in ligand concentration, ∆ci, depends on the whole

history of binding and unbinding events, making this equation unsolvable. However, we can

estimate the effect of diffusion in the limit of slow binding and unbinding, or fast diffusion.

Hence, for small ∆ci/c, we can expand to linear order

〈δc2〉
c20

≈ 1

N

(
1 + 2

〈∆c〉
c0

)
(55)
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to simplify the equation for the uncertainty. Equation 55 now contains only a typical per-

turbation in ligand concentration 〈∆c〉. To estimate this we use the solution of the diffusion

equation for a single ligand molecule

∆±c(�r, t) =
±1

(4πDt)d/2
e− r2

4Dt , (56)

with +1 corresponding to an unbound ligand molecule (source) and −1 corresponding

to a bound ligand molecule (sink) at t = 0. We assume the receptor sits at �r = 0, at

which we wish to evaluate perturbation. Here, we provide results for dimensions d = 2 and 3.

2-dimensional diffusion: Here we consider d = 2 in Eq. 56. To further simplify the

calculation of the whole history of binding and unbinding events, we assume all binding

events are independent, i.e. only depend on the average rate k+c0 and not also on the

perturbations. We thus obtain the infinite series

〈∆c(t)〉 =
1

4πD

(〈
1

τ1

〉
−

〈
1

τ1 + τ2

〉
+ ...(−1)K+1

〈
1

τ1 + τ2 + ...+ τK

〉
+ ...

)
, (57)

with the most recent (unbinding) event occurring at time t − τ1 and increasing the overall

concentration (source) and the second most recent (binding) event occurring at time t−(τ1+

τ2) and decreasing the overall concentration (sink), and so on. The averages are performed

over the probability of a sequence of K events and then summed in the limit K → ∞ to

account for an infinitely long history.

For the special case p = 1/2, so that 〈τu〉 = 〈τb〉 = τ and λ = k+c0 = k−, each random

number τ is generated with the same distribution ψ(τ) = λe−λτ . In order to evaluate the

generic term in the series of Eq. (57) one has first to evaluate the probability density that a

given value TK is obtained for the sum
∑K

i=1 τi = TK after K draws of the random variable

τ . This probability is given by the K-times convolution of the distribution ψ(τ), which is:

ψK(TK) = λKe−λTK
TK−1

K

(K − 1)!
. (58)

Then, by using this distribution one can evaluate 〈 1
TK

〉. This allows us to obtain an expression

for a generic term with K ≥ 2 in the sum in Eq. (57), leading to〈
1

TK

〉
=

∫ ∞

0

1

TK

ψK(TK)dTK =
λ

K − 1
. (59)
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Summing all these contributions for K ≥ 2 leads to

∞∑
K=2

(−1)K+1 λ

K − 1
= −λ log 2. (60)

The contribution for K = 1 has to be calculated separately. In fact, one has to calculate

〈1/τ〉 = λ
∫ ∞

0
dt e−λt/t, which is the Gamma function Γ(n) for diverging parameter n = −1.

To make progress we realise that the maximal perturbation is the change in concentration

due to a single ligand molecule released into a 2D area of the order of the size of the binding

site, so ∆c+,max � 1/a2 = 1
4πDτa

. This effectively introduces a minimal time τa = a2/(4πD).

As a result, we approximate the integral by〈
1

τ

〉
= λ

∫ ∞

τa

dt
e−λt

t
= −λEi(−x) = −λ

[
γ + lnx+

∞∑
k=1

(−1)k xk

k(k!)

]
(61)

with x = k+c0τa << 1 and hence lnx << 0, and γ ≈ 0.57721... the Euler-Mascheroni

constant. For very small x, γ and the sum can be neglected and the dominant term is the

logarithmic part. In this limit it is evident as well that the contribution of the most recent

event is much larger than the contribution from all other events in Eq. (60), so that the

final result is

〈∆c〉 ≈ k+c0
4πD

ln

(
4πD

k+c0a2

)
, (62)

showing the competition between rebinding with rate k+c0 and diffusion to remove the

unbound ligand molecule. As expected for 2D, this result only shows a weak dependence

on diffusion and receptor size.

3-dimensional diffusion: Here we set d = 3 in Eq. 56 and obtain

〈∆c〉 =
1

(4πD)3/2

(
〈τ−3/2

1 〉 − 〈(τ1 + τ2)
−3/2〉 + ...(−1)K+1〈(τ1 + τ2 + ...+ τK)−3/2〉...

)
. (63)

The calculation therefore, under the simplifying assumption λ = k+c0 = k−, is analogous to

the 2-dimensional case with the only difference that the average 〈τ−3/2〉 = λ
∫ ∞

0
dτe−λτ/τ 3/2

replaces 〈τ−1〉. Also in this case it can be shown that the contribution from the most recent

event is dominant as compared to that of all other events (i.e. terms in Eq. (63) with

K ≥ 2). Using the distribution in Eq. (58) it is possible to calculate the contributions from

all the terms with K ≥ 2 in Eq. (63). One obtains for a generic term in the sum:〈
1

T
3/2
K

〉
=

∫ ∞

0

T
−3/2
K ψK(TK)dTK = λ3/2 Γ[K − 3/2]

Γ[K]
, (64)
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which, after summation, leads to:

∞∑
K=2

(−1)K+1

〈
1

T
3/2
K

〉
= −2(

√
2 − 1)

√
πλ3/2. (65)

The contribution from the most recent event (i.e. first term in Eq. (63)) is given by

〈τ−3/2〉 = λ
∫ ∞

0
dτe−λτ/τ 3/2. Introducing x = k+c0τa = λτa � 1 as in the 2D case, the

evaluation of 〈τ−3/2〉 leads to

〈τ−3/2〉 = λ

∫ ∞

τa

dτe−λτ/τ 3/2 = 2λ3/2

[
e−x

√
x

− √
πErf

(√
x
)]
, (66)

which, to leading order in x << 1, leads to

〈τ−3/2〉 � 2λ√
a2/(4πD)

. (67)

The ratio between the contribution from terms with K ≥ 2 of Eq. (65) and this contribution

amounts to ∼ √
λτa =

√
x � 1, which justifies keeping only the first term in Eq. (63) in

the limit x � 1. The final result is therefore

〈∆c〉 � 1

(4πD)3/2
〈τ−3/2〉 � 1

(4πD)3/2

2k+c0√
a2/(4πD)

=
k+c0
2πDa

, (68)

which has a stronger dependence on diffusion and receptor size compared to sensing in 2D.

The results for diffusion in 2D and 3D are stated in the main text. Specifically, Eq. 12 in the

main text is obtained by using N = Tu/〈τu〉 for the number of binding/unbinding intervals

with Tu = (1 − p)T and 〈τu〉 = (k+c0)
−1. Note that while we estimate 〈∆c〉 from the whole

history of binding events, in our calculation the individual binding events depend only on

the average ligand concentration c0. Hence, similar to other derivations of the uncertainty

of sensing by a receptor with ligand rebinding (main text Eqs. (10) [7] and (11) [8]), we

calculate the first-order correction to the uncertainty due to ligand diffusion and rebinding.

Note also that only the last unbinding event counts for deriving 〈∆c〉 so the exact durations

of former unbound intervals do not matter.

VI. UNCERTAINTY AND DECISION-MAKING ALGORITHMS

Rapid and accurate decisions are ubiquitously made in cells motivating modelling of

how this timely accuracy is achieved. Here, we follow Siggia and Vergassola to evaluate
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the decision time and uncertainty associated with optimal decision-making algorithms [9].

In particular, we want to make a connection between decision-making algorithms and ML

estimation/BP limit.

In the case of deciding between two options, e.g. two concentration values c1 and c2,

it can be shown that the Wald algorithm is, on average, optimal in time. Given a fixed

probability that the wrong decision is made, the Wald algorithm makes the decision in the

shortest amount of time on average. In this algorithm two fixed thresholds H1 and H2 > H1

are given, and at each time step the ratio

R = L(data|c1)/L(data|c2) (69)

between the likelihoods conditioned to either option is evaluated. Concentration c1(c2) is

chosen if R ≤ H1(R ≥ H2), while data acquisition continues if H1 < R < H2. The algorithm

can be mapped to a diffusion process of the variable lnR between two absorbing boundaries,

corresponding to the thresholds, the values of which are in turn directly connected to the

decision-error probability that c1(c2) is wrongly chosen when real value is c2(c1). In the

diffusive approximation for lnR the average absorption time 〈Tabs〉, which coincides with

the decision time, is given by [9]

〈Tabs〉 =
x

V
+

K

V sinh(V K/D)

[
cosh(KV/D) − e−xV/D

]
(70)

with x the initial value, V the drift and D the diffusivity of lnR, and symmetric absorbing

boundaries at x = ±K = ±1
2
log(H2

H1
) .

VII. NEYMAN-PEARSON LEMMA

In the Wald algorithm time is not constrained to be fixed, and this algorithm is optimal

in time on average. If time is constrained, i.e. fixed sample or data size, the optimal

test is given by the Neyman-Pearson (NP) lemma. When choosing between two options c1

(reference hypothesis) and c2 with a criterion A for rejecting c1 and a given probability of a

decision error

α = P (A|c1), (71)

i.e. of wrongly choosing c2 when the data are generated with c1, the optimal choice is made

by rejecting c1 in favour of c2 if R ≤ H and choosing c1 otherwise. Again, R is the likelihood
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ratio of Eq. (69) and H is an α-dependent threshold (NP lemma). This optimal criterion

fulfils by definition the constraint of Eq. (71)

α = P (R ≤ H|c1)=
∫

x:R≤H

L(x|c1)dx, (72)

which shows also that the threshold valueH is determined by α. This algorithm is optimal in

the sense that any other algorithm based on a different rejection criterion A of the reference

hypothesis c1 but with the same α, will have a smaller probability P (A|c2) of correctly

choosing c2 (i.e. correctly rejecting c1) as compared to the analogous NP’s probability

P (R ≤ H|c2):

P (R ≤ H|c2)=
∫

x:R≤H

L(x|c2)dx ≥ P (A|c2)=
∫

x:A

L(x|c2)dx ∀A on x. (73)

In other words for all possible data generated with c2 the NP test will correctly choose c2

more often than any other test with the same α. For this reason this algorithm may be seen

as a maximal-likelihood decision-making algorithm as the likelihood of correctly choosing c2

is maximal. So while the Wald algorithm is optimal in time on average, for a fixed time the

NP algorithm leads to a maximum likelihood of the correct decision.

VIII. DECISION-MAKING ALGORITHMS VS. BERG-PURCELL LIMIT

Berg and Purcell (BP) were the first to derive an estimate for the uncertainty of a mea-

surement of ligand concentration in a fixed time T by a small detecting device, e.g. a cell.

Here we consider their model as applied to a single receptor. As discussed, their estimate

was later improved by the maximum-likelihood (ML) estimate, showing that the uncer-

tainty is actually smaller by a factor two because only unbound intervals carry information

about the external concentration [6]. Estimates for the uncertainty refer to concentration

measurements and cannot directly be compared to decision making between two values.

However, one can still assume that in the BP and ML estimates, different concentrations

c1 and c2 can be told apart if
√〈δc2〉 < |c2 − c1| and that, assuming either c1 or c2 as the

true value, a decision error occurs if a measurement returns a value outside one standard

deviation from the true value. With these choices for the thresholds one accounts for large

fluctuations around the true value, which may lead to wrongly deciding on the other of two

possible options for the true value. We are now in a position in which we can attempt to
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compare BP and ML estimates with the Wald and NP algorithms. Setting the decision error

α of the Wald and NP algorithms equal to the decision error from both the BP and ML

estimates introduced above, one obtains minimum value |c2 − c1| for fixed value c1 so that

a decision between c2 and c1 can be made with error α. This value can in turn be used as a

definition of the uncertainty in decision making and compared to the BP and ML estimates.

Specifically, for a given value of T for the Wald algorithm one can use Eq. (70) and,

for given c1, derive the corresponding value of c2 that can be distinguished in time T with

decision error α = α(K), with x = ±K the absorbing boundaries for the symmetric case.

Using this approach, we can plot (c2 − c1)
2 of the Wald algorithm as a function of T and

hence indirectly compare to the uncertainties from BP and ML (Fig. 5). A similar procedure

allows us to extract (c2−c1)2 for the fixed-time Neyman-Pearson lemma (which is also shown

in Fig. 5).
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