# **Supplementary Material for**

## Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR-Cas system

Joshua R. Elmore, Nolan Sheppard, Nancy Ramia, Trace Deighan, Hong Li, Rebecca M. Terns, Michael P. Terns

|    | Contents                                     | Page |
|----|----------------------------------------------|------|
| 1. | Supplemental Figures S1-S7                   | 1    |
| 2. | Supplemental Materials and Methods           | 9    |
| 3. | Supplemental Table S1 – Strains and Plasmids | 10   |
| 4. | Supplemental Table S2 – Oligo Sequences      | 13   |
| 5. | References                                   | 19   |
|    |                                              |      |



**Supplemental Figure S1.** *Pyrococcus furiosus cas* gene locus organization. The genome organization and annotations of the predicted cas genes were adapted from the NCBI database (http://www.ncbi.nlm.nih.gov). Type III-B Cmr (blue), Type I-G Cst (yellow), Type I-A Csa (green), and adaptation/biogenesis cas genes (gray) are indicated with cas gene superfamily designations indicated below relevant csa, cst, and cmr genes. The csx1 gene (white) is often found in association with Type III-B systems and is encoded in between the cmr genes in *Pf*.



**Supplemental Figure S2.** 3' flanking positions +1/2/3 are important for self versus non-self discrimination by Cmr. (A) Location of tested flanking sequences (red) relative to the target sequence in the DNA (orange) with aligned crRNA (grey) with an indication of potential complementarity between crRNA 5' tag (black) and the flanking sequence. (B) Colonies produced by infection of 12 plasmids in wild-type (3 endogenous CRISPR-Cas systems, dark grey),  $\Delta$ Cmr (lacking Cmr system, medium grey), Cmr (Cmr only, blue). Colony numbers are plotted with the standard deviation in 9 replicates indicated by error bars. All plasmids, except a negative control (no target), produce a 7.01 target RNA, but vary in 3' flanking sequence. The 3' flanking sequence is mutated sequentially from fully complementary with the 5' tag (red) to fully non-complementary (black). Complementarity is indicated graphically with 5' tag (black) and target flanking region (red). Red asterisks on the chart indicate intermediate silencing phenotypes.



**Supplemental Figure S3.** The Cmr system in *Pfu* utilizes a protospacer adjacent motif (PAM) to distinguish invader from host. Colonies produced by infection with 65 plasmids in wild-type (A) and Cmr (B) strains. Colony numbers are the average of at least 3 replicates with the standard deviation indicated by error bars. All plasmids, except a negative control (no target), produce 7.01 target RNAs that differ by the 3 nucleotides immediately 3' of the 7.01 target sequence (see Fig. 2A), as indicated. Target-adjacent sequences that activated CRISPR-Cas targeting resulting in greater than 100-fold reduction in colony numbers relative to negative control plasmid are shaded dark blue or grey. Sequences that conferred 30-fold to 100-fold reduction in colony numbers are shaded light blue or grey.



**Supplemental Figure S4.** Cmr silences additional CRISPR target sequences in a target transcription and PAM dependent manner. (A) Target sequence transcription configuration of the various plasmids. Orientation of the 2.01/6.01 crRNA target sequence relative to the promoter and target-adjacent PAM region is shown. Plasmids are designed for transcription of a target RNA complementary to the endogenous 2.01/6.01 crRNAs (target) or transcription of an RNA that is not complementary to the 2.01/6.01 crRNAs (rc target). (B) Colonies produced by infection with 11 plasmids in wild-type (grey) and Cmr (blue) strains. Plasmids with 2.01 or 6.01 target sequences are indicated above. The presence of target region transcript is indicated below graph as "no target", "target", and "rc of target" with the target-adjacent sequences indicated beneath. Colony numbers are the average of three replicates with error bars indicating the standard deviation.



**Supplemental Figure S5.** Csx1 is not required for plasmid interference by Cmr in *Pfu.* (A) Plasmid infection of Csx1 deletion strain. Cmr strains with (Cmr, dark grey) or without Csx1 (Cmr  $\Delta$ Csx1, light grey) were infected with plasmids expressing no target RNA (---), crRNA 7.01 target RNA (tar), or the reverse complement RNA (rc). Colonies numbers are plotted with error bars indicating standard deviation in three replicates. Both target plasmids contain a GGG target-adjacent sequence. (B) Western blot analysis of Csx1 expression. S20 extract containing 50 µg protein from either Cmr and Cmr  $\Delta$ Csx1 strains were probed with polyclonal antibodies against *Pfu* Csx1. (C) Cmr complex from Cmr and Cmr  $\Delta$ Csx1 strains. Proteins immunoprecipitated with preimmune (PI, Cmr only) or immune (Im) antibodies again Cmr2 from Cmr strains with (Cmr) or without Csx1 (Cmr  $\Delta$ Csx1) were analyzed by SDS-PAGE and silver staining. Cmr protein identities are indicated based on predicted molecular weights and mass spectrometry. (D) RNA cleavage activity of Cmr complexes with (Cmr) or without (Cmr  $\Delta$ Csx1) Csx1. Complexes immunopurified from Cmr strains were incubated with 5' end-labeled crRNA 7.01 target RNA. Products were analyzed by denaturing PAGE. Decade Marker RNAs (M) were included for size estimations. Asterisks mark primary RNA cleavage products.



**Supplemental Figure S6.** Cmr2 ssDNA cleavage is divalent cation dependent. Wild-type Cmr2 protein was incubated with a 5' radiolabeled single stranded DNA and several different metal chlorides (indicated above) in the absence (-) or presence of EDTA (+). The resulting products were separated by denaturing PAGE, and visualized by phosphorimaging. A DNA size ladder (M) is used in the left-most lane for sized identification, and graphical representation of cleavage products is indicated on the right.



**Supplemental Figure S7.** Construction of *Pfu* strains. (A) Steps in *Pfu* strain construction by homologous recombination of transformed SOE-PCR (splicing by overlap extension polymerase chain reaction) constructs. (B) Generic SOE-PCR construct with approximate sizes and primer locations indicated. Initially, four distinct PCR products are generated by PCR using primer pairs 1\*/2\*, 3/4, 5\*/6\*, and 7\*/8\*. The final product displayed is generated by two additional rounds of SOE-PCR with two PCR products acting as templates in a PCR reaction with the outer primers of the two products. Primers 3 and 4 are used to amplify the Pgdh-*pyrF* selection marker in all constructs. Primers 1\*-2\* & 5\*-8\* are specific for a given construct (primer numbers indicated in panel C). To mediate splicing events, primers 2\*, 5\* and 7\* also contain sequences that overlap with the adjacent PCR products. (C) Graphic representation of the individual SOE-PCR constructs used for strain construction in this study. Annotated *Pf* ORF numbers are indicated. Primer numbers refer to oligos in Table S2. For the Cmr2 $\Delta$ HD strain, the deleted nucleotides are indicated next to the PF1129 (Cmr2) ORF. For amino acid substitution SOE-PCR products, a thin red line indicates the mutated sequences.

### **Supplemental Experimental Procedures**

#### **P.furiosus** strain construction

*Pfu* strains were constructed using a variant of the previously described pop-in/pop-out marker replacement technique (Supplemental Figure 7)(Lipscomb et al. 2011; Farkas et al. 2012). The transformed PCR products were generated by splicing 4 PCR products together with Splicing by Overlap Extension PCR (SOE-PCR). A schema of the SOE-PCR products guiding each mutation is shown in Supplemental Figure 7C.

PCR primers used to generate SOE-PCR products are listed in Supplemental Table S2. Strains were constructed as follows. TPF06 ( $\Delta$ Cmr) was constructed by deletion of PF1130-PF1124 from wild-type CRISPR-Cas strain JFW02. TPF15 (Cmr;  $\Delta csa\Delta cst$ ) and TPF20 (null;  $\Delta csa\Delta cmr+cst$ ) were each constructed from JFW02 by stepwise deletion of PF0637-0644 ( $\Delta$ Csa) and either PF1121-PF1123 ( $\Delta$ cst) for TPF15 or PF1121-1130 ( $\Delta$ Cmr+cst) for TPF20. TPF24 ( $\Delta$ Csx1) was constructed by deletion of PF1127 from TPF15. Cmr2 mutant strains TPF25 (Cmr2 $\Delta$ HD) and TPF27 (Cmr2-Palm<sub>m</sub>) were constructed via mutation of Cmr2 in TPF15. Double Cmr2 mutant strains TPF35 (Cmr2 $\Delta$ HD) and TPF37 (Cmr2-HD<sub>m</sub>) were constructed via further mutation of Cmr2 in TPF27. PCR constructs used in each case are denoted in parentheses.

#### Protein expression and purification

Csx1 antigen (PF1127) was cloned from Pf gDNA into a modified pET24D vector with an N-terminal 6x His-tag. Protein expression and purification was performed as previously described for Cmr proteins (Hale et al. 2009; Hale et al. 2014).

#### Western Blot analysis

As previously described, antibodies against recombinant Pf Csx1 were generated (Carte et al. 2010). Western blot analysis was carried out as previously described (Hale et al. 2012) with the following modifications: S20 cell extracts containing 50 µg of protein were boiled in Laemmli buffer for 5 minutes, centrifuged briefly, and separated on 12.5% SDS-PAGE. Pf Csx1 antibody was used for primary antibody incubation at 0.5 µg/mL in TBST.

#### Cmr2 DNA cleavage assay

Metal utilization by Cmr2 for DNA cleavage was assayed using conditions described in the main text with the following modifications. Other metals are substituted for NiCl<sub>2</sub> at 2 mM where noted. 5'-radiolabeled DNA1 (Supplemental Table S2) was used as a substrate for ssDNA cleavage.

## Supplemental Table S1

|                          |                                                                               | Source or  |
|--------------------------|-------------------------------------------------------------------------------|------------|
| E.coli Strains           | Revelevant Characteristics                                                    | Reference  |
|                          | F– mcrA $\Delta$ (mrr-hsdRMS-mcrBC) $\Phi$ 80lacZ $\Delta$ M15                |            |
|                          | $\Delta lac X74 \ rec A1 \ ara D139 \ \Delta(ara \ leu) \ 7697 \ galU \ galK$ |            |
| Top10                    | rpsL (StrR) endA1 nupG                                                        | Invitrogen |
|                          | <i>E.</i> coli B F– ompT hsdS( $r - m -$ ) dcm+ Tetr gal                      |            |
|                          | $\lambda$ (DE3) endA Hte [argU proL Camr] [argU ileY leuW]                    |            |
| BL21-CodonPlus(DE3)-RIPL | Strep/Specr]                                                                  | Novagen    |

|                           |                                                                | Source or  |
|---------------------------|----------------------------------------------------------------|------------|
| P.furiosus Strains        | Revelevant Characteristics                                     | Reference  |
|                           |                                                                | (Farkas et |
| JFW02 (WT)                | $\Delta pyrF \Delta trpAB$                                     | al. 2011)  |
| TPF06 (ΔCmr)              | JFW02 Δ <i>cmr</i> (Δ <i>PF1124-PF1130</i> )                   | This study |
| TPF15 (Cmr)               | JFW02 Δcsa (ΔPF0637-0644) Δcst (ΔPF1121-1123)                  | This study |
|                           | JFW02 $\Delta cmr+cst$ ( $\Delta PF1121-PF1130$ ) $\Delta csa$ |            |
| TPF20 (null)              | $(\Delta PF0637-0644)$                                         | This study |
| TPF24 ( $\Delta Csx1$ )   | TPF15 Δ <i>csx1</i> (ΔPF1127)                                  | This study |
| TPF25 (Cmr2ΔHD)           | TPF15 cmr2::cmr2 $\Delta$ HD                                   | This study |
| TPF27 (Cmr2-DD-AA)        | TPF15 cmr2::cmr2-D673A,D674A                                   | This study |
| TPF35 (Cmr2::Cmr2∆HD, DD- |                                                                |            |
| AA)                       | TPF27 cmr2::cmr2 $\Delta$ HD                                   | This study |
| TPF37 (Cmr2::Cmr2-HD-AA,  |                                                                |            |
| DD-AA)                    | TPF27 cmr2::cmr2-H13A,D14A                                     | This study |

| Plasmids   | Revelevant Characteristics                                                             | Source or<br>Reference |
|------------|----------------------------------------------------------------------------------------|------------------------|
| 1 Iusiiius |                                                                                        | (Farkas et             |
| pJFW17     | AprR general cloning vector with <i>E.coli</i> OriT, and <i>Pfu</i> Pgdh-pyrF cassette | al. 2011)              |
|            |                                                                                        | (Farkas et             |
| pJFW18     | pJFW17 derivative; <i>Pfu</i> OriC for replication in <i>P.furiosus</i>                | al. 2011)              |
| pJE47      | pJFW18 derivative; Tk-csg promoter/Tk-chiA terminator expression cassette              | This study             |
| pJE65      | pJE47 derivative; 7.01 spacer, GGG flank, target strand transcribed                    | This study             |
| pJE66      | pJE47 derivative; 7.01 spacer, GGG flank, non-target strand transcribed                | This study             |
|            | pJE47 derivative; 7.01 spacer, flank pos +1-8 are 5' tag comp., target strand          |                        |
| pJE75      | trans.                                                                                 | This study             |
|            | pJE47 derivative; 7.01 spacer, flank pos +1-7 are 5' tag comp., target strand          |                        |
| pJE76      | trans.                                                                                 | This study             |
|            | pJE47 derivative; 7.01 spacer, flank pos +1-6 are 5' tag comp., target strand          |                        |
| pJE77      | trans.                                                                                 | This study             |
|            | pJE47 derivative; 7.01 spacer, flank pos +1-5 are 5' tag comp., target strand          |                        |
| pJE78      | trans.                                                                                 | This study             |
|            | pJE47 derivative; 7.01 spacer, flank pos +1-4 are 5' tag comp., target strand          |                        |
| pJE79      | trans.                                                                                 | This study             |
|            | pJE47 derivative; 7.01 spacer, flank pos +1-3 are 5' tag comp., target strand          |                        |
| pJE80      | trans.                                                                                 | This study             |
|            | pJE47 derivative; 7.01 spacer, flank pos +1-2 are 5' tag comp., target strand          |                        |
| pJE81      | trans.                                                                                 | This study             |
| pJE82      | pJE47 derivative; 7.01 spacer, flank pos +1 is 5' tag comp., target strand trans.      | This study             |
|            | pJE47 derivative; 7.01 spacer, flank pos +1-8 are 5' tag reversed target strand        |                        |
| pJE83      | trans.                                                                                 | This study             |

| pJE84  | pJE47 derivative; 7.01 spacer, flank pos +4-8 are 5' tag comp., target strand trans. | This study |
|--------|--------------------------------------------------------------------------------------|------------|
|        | pJE47 derivative; 7.01 spacer, flank pos +2-3 are 5' tag comp., target strand        |            |
| pJE85  | trans.                                                                               | This study |
| pJE186 | pJE47 derivative; 7.01 spacer, TTT flank, target strand transcribed                  | This study |
| pJE187 | pJE47 derivative; 7.01 spacer, TTC flank, target strand transcribed                  | This study |
| pJE188 | pJE47 derivative; 7.01 spacer, TTA flank, target strand transcribed                  | This study |
| pJE189 | pJE47 derivative; 7.01 spacer, TTG flank, target strand transcribed                  | This study |
| pJE190 | pJE47 derivative; 7.01 spacer, TCT flank, target strand transcribed                  | This study |
| pJE191 | pJE47 derivative; 7.01 spacer, TCC flank, target strand transcribed                  | This study |
| pJE192 | pJE47 derivative; 7.01 spacer, TCA flank, target strand transcribed                  | This study |
| pJE193 | pJE47 derivative; 7.01 spacer, TCG flank, target strand transcribed                  | This study |
| pJE194 | pJE47 derivative; 7.01 spacer, TAT flank, target strand transcribed                  | This study |
| pJE195 | pJE47 derivative; 7.01 spacer, TAC flank, target strand transcribed                  | This study |
| pJE196 | pJE47 derivative; 7.01 spacer, TAA flank, target strand transcribed                  | This study |
| pJE197 | pJE47 derivative; 7.01 spacer, TAG flank, target strand transcribed                  | This study |
| pJE198 | pJE47 derivative; 7.01 spacer, TGT flank, target strand transcribed                  | This study |
| pJE199 | pJE47 derivative; 7.01 spacer, TGC flank, target strand transcribed                  | This study |
| pJE200 | pJE47 derivative; 7.01 spacer, TGA flank, target strand transcribed                  | This study |
| pJE201 | pJE47 derivative; 7.01 spacer, TGG flank, target strand transcribed                  | This study |
| pJE202 | pJE47 derivative; 7.01 spacer, CTT flank, target strand transcribed                  | This study |
| pJE203 | pJE47 derivative; 7.01 spacer, CTC flank, target strand transcribed                  | This study |
| pJE204 | pJE47 derivative; 7.01 spacer, CTA flank, target strand transcribed                  | This study |
| pJE205 | pJE47 derivative; 7.01 spacer, CTG flank, target strand transcribed                  | This study |
| pJE206 | pJE47 derivative; 7.01 spacer, CCT flank, target strand transcribed                  | This study |
| pJE207 | pJE47 derivative; 7.01 spacer, CCC flank, target strand transcribed                  | This study |
| pJE208 | pJE47 derivative; 7.01 spacer, CCA flank, target strand transcribed                  | This study |
| pJE209 | pJE47 derivative; 7.01 spacer, CCG flank, target strand transcribed                  | This study |
| pJE210 | pJE47 derivative; 7.01 spacer, CAT flank, target strand transcribed                  | This study |
| pJE211 | pJE47 derivative; 7.01 spacer, CAC flank, target strand transcribed                  | This study |
| pJE212 | pJE47 derivative; 7.01 spacer, CAA flank, target strand transcribed                  | This study |
| pJE213 | pJE47 derivative; 7.01 spacer, CAG flank, target strand transcribed                  | This study |
| pJE214 | pJE47 derivative; 7.01 spacer, CGT flank, target strand transcribed                  | This study |
| pJE215 | pJE47 derivative; 7.01 spacer, CGC flank, target strand transcribed                  | This study |
| pJE216 | pJE47 derivative; 7.01 spacer, CGA flank, target strand transcribed                  | This study |
| pJE217 | pJE47 derivative; 7.01 spacer, CGG flank, target strand transcribed                  | This study |
| pJE218 | pJE47 derivative; 7.01 spacer, ATT flank, target strand transcribed                  | This study |
| pJE219 | pJE47 derivative; 7.01 spacer, ATC flank, target strand transcribed                  | This study |
| pJE220 | pJE47 derivative; 7.01 spacer, ATA flank, target strand transcribed                  | This study |
| pJE221 | pJE47 derivative; 7.01 spacer, ATG flank, target strand transcribed                  | This study |
| pJE222 | pJE47 derivative; 7.01 spacer, ACT flank, target strand transcribed                  | This study |
| pJE223 | pJE47 derivative; 7.01 spacer, ACC flank, target strand transcribed                  | This study |
| pJE224 | pJE47 derivative; 7.01 spacer, ACA flank, target strand transcribed                  | This study |
| pJE225 | pJE47 derivative; 7.01 spacer, ACG flank, target strand transcribed                  | This study |
| pJE226 | pJE47 derivative; 7.01 spacer, AAT flank, target strand transcribed                  | This study |
| pJE227 | pJE47 derivative; 7.01 spacer, AAC flank, target strand transcribed                  | This study |

| pJE228         | pJE47 derivative; 7.01 spacer, AAA flank, target strand transcribed | This study              |
|----------------|---------------------------------------------------------------------|-------------------------|
| pJE229         | pJE47 derivative; 7.01 spacer, AAG flank, target strand transcribed | This study              |
| pJE230         | pJE47 derivative; 7.01 spacer, AGT flank, target strand transcribed | This study              |
| pJE231         | pJE47 derivative; 7.01 spacer, AGC flank, target strand transcribed | This study              |
| pJE232         | pJE47 derivative; 7.01 spacer, AGA flank, target strand transcribed | This study              |
| pJE233         | pJE47 derivative; 7.01 spacer, AGG flank, target strand transcribed | This study              |
| pJE234         | pJE47 derivative; 7.01 spacer, GTT flank, target strand transcribed | This study              |
| pJE235         | pJE47 derivative; 7.01 spacer, GTC flank, target strand transcribed | This study              |
| pJE236         | pJE47 derivative; 7.01 spacer, GTA flank, target strand transcribed | This study              |
| pJE237         | pJE47 derivative; 7.01 spacer, GTG flank, target strand transcribed | This study              |
| pJE238         | pJE47 derivative; 7.01 spacer, GCT flank, target strand transcribed | This study              |
| pJE239         | pJE47 derivative; 7.01 spacer, GCC flank, target strand transcribed | This study              |
| pJE240         | pJE47 derivative; 7.01 spacer, GCA flank, target strand transcribed | This study              |
| pJE241         | pJE47 derivative; 7.01 spacer, GCG flank, target strand transcribed | This study              |
| pJE242         | pJE47 derivative; 7.01 spacer, GAT flank, target strand transcribed | This study              |
| pJE243         | pJE47 derivative; 7.01 spacer, GAC flank, target strand transcribed | This study              |
| pJE244         | pJE47 derivative; 7.01 spacer, GAA flank, target strand transcribed | This study              |
| pJE245         | pJE47 derivative; 7.01 spacer, GAG flank, target strand transcribed | This study              |
| pJE246         | pJE47 derivative; 7.01 spacer, GGT flank, target strand transcribed | This study              |
| pJE247         | pJE47 derivative; 7.01 spacer, GGC flank, target strand transcribed | This study              |
| pJE248         | pJE47 derivative; 7.01 spacer, GGA flank, target strand transcribed | This study              |
| pJE249         | pJE47 derivative; 7.01 spacer, GGG flank, target strand transcribed | This study              |
| pJE271         | pJE65 derivative; Pcsg deleted                                      | This study              |
| pJE272         | pJE66 derivative; Pcsg deleted                                      | This study              |
| pJE275         | pJE47 derivative; 6.01 spacer, GGG flank, target strand transcribed | This study              |
|                | pJE47 derivative; 6.01 spacer, GGG flank, non-target (guide) strand |                         |
| pJE276         |                                                                     | This study              |
| pJE294         | pJE47 derivative; mutated non-target spacer, GGG flank either end   | This study              |
| pJE299         | pJE47 derivative; 6.01 spacer, AAA flank, target strand transcribed | This study              |
| pJE300         | pJE47 derivative; 6.01 spacer, CCC flank, target strand transcribed | This study              |
| pJE301         | pJE47 derivative; 6.01 spacer, TTT flank, target strand transcribed | This study              |
| pJE302         | pJE47 derivative; 2.01 spacer, GGG flank, target strand transcribed | This study              |
| pJE303         | transcribed                                                         | This study              |
| pJE304         | pJE47 derivative; 2.01 spacer, AAA flank, target strand transcribed | This study              |
| pJE305         | pJE47 derivative; 2.01 spacer, CCC flank, target strand transcribed | This study              |
| pJE306         | pJE47 derivative; 2.01 spacer, TTT flank, target strand transcribed | This study              |
| pLC64-<br>ChiA | T.kodakaraensis shuttle vector with Pcsg-ChiA expression cassette   | (Elmore et<br>al. 2013) |

Table S2 - Oligos

Northern Probe Oligos

| Northern Probe        | Sequence (5'-3')          |  |
|-----------------------|---------------------------|--|
| 7.01 antisense        | GCTCTCAGCCGCAAGGACCGCATAC |  |
| 7.01 sense            | GTATGCGGTCCTTGCGGCTGAGAGC |  |
| Pfu 5S rRNA antisense | CCCGGCTTCCCGCCCCTCT       |  |

## **SOE-PCR Construct Primer Oligos**

| Primer                  | Sequence (5'-3')                                          |
|-------------------------|-----------------------------------------------------------|
| Pgdh_PyrF_F [3]         | GATTGAAAATGGAGTGAGCTGAG                                   |
| Pdgh_PyrF_R [4]         | TTATCTTGAGCTCCATTCTTTCACC                                 |
| $\Delta Csx1_1$ [1]     | GGCAGAATTTACCCCCTTCC                                      |
| ΔCsx1_2 [2]             | CTCAGCTCACTCCATTTTCAATCTCATTCCCATATCCCTCCT<br>AAAGC       |
| ΔCsx1_5 [5]             | GGTGAAAGAATGGAGCTCAAGATAATCCCACAATAGGGAA<br>AGTTGG        |
| ΔCsx1_6 [6]             | TCATTCCCATATCCCTCCTAAAGC                                  |
| ΔCsx1_7 [7]             | GCTTTAGGAGGGATATGGGAATGACTGCAAATCTCGCTTAT<br>GAAG         |
| ΔCsx1_8 [8]             | CCTTTGCCCTGGGAGTTACA                                      |
| Cmr2∆HD_1 [9]           | TGTTACACCGCTTAGTTCTCCA                                    |
| Cmr2ΔHD_2 [10]          | CTCAGCTCACTCCATTTTCAATCGTTAACCACTCCAACCACC                |
| Cmr2ΔHD_5 [11]          | GGTGAAAGAATGGAGCTCAAGATAATGGATTGCCTCGATTT<br>AAGC         |
| Cmr2ΔHD_6 [12]          | GTTAACCACTCCAACCACC                                       |
| Cmr2AHD_7 [13]          | GGTGGTTGGAGTGGTTAACGTTAAGGATCCCACTTTGCTC                  |
| Cmr2ΔHD_8 [14]          | GGCACTTCCATCCTTTGAGT                                      |
| Cmr2-D673A,D674A_1 [15] | TGGATAGCCTGGGAGAGAGA                                      |
| Cmr2-D673A,D674A_2 [16] | CTCAGCTCACTCCATTTTCAATCCCCTCCAGCGTATATTAGC                |
| Cmr2-D673A,D674A_5 [17] | GGTGAAAGAATGGAGCTCAAGATAATTATGGATGGCGACG<br>ATATG         |
| Cmr2-D673A,D674A_6 [18] | CCCTCCAGCGTATATTAGC                                       |
| Cmr2-D673A,D674A_7 [19] | GCTAATATACGCTGGAGGGGGCAGCAGTCCTAGCAATTTTGC<br>CAGTC       |
| Cmr2-D673A,D674A_8 [20] | AAATTCGGGTTCCTCCTCAC                                      |
| Cmr2-H13A,D14A_1 [21]   | ATCCTCCTGGGAGCAGATTT                                      |
| Cmr2-H13A,D14A_2 [22]   | CTCAGCTCACTCCATTTTCAATCAAGGTATACAAAAAGTTT<br>CTCTTTGATG   |
| Cmr2-H13A,D14A_5 [23]   | GGTGAAAGAATGGAGCTCAAGATAAAGGAGAGCTTCTCCC<br>CTTTG         |
| Cmr2-H13A,D14A_6 [24]   | AAGGTATACAAAAAGTTTCTCTTTGATG                              |
| Cmr2-H13A,D14A_7 [25]   | CATCAAAGAGAAACTTTTTGTATACCTTGCAGCACCACCAG<br>ACAAGGCTCTAA |
| Cmr2-H13A,D14A_8 [26]   | CCGAACTTGTCCACTATCACC                                     |
| ΔCmr_1 [27]             | TCCAATCCGAAGCTTGCAACATA                                   |

| CTCAGCTCACTCCATTTTCAATCGCTACCTCACCGAGCCAA  |
|--------------------------------------------|
| ATAAAGTG                                   |
| GGTGAAAGAATGGAGCTCAAGATAACTGGGCTTCGGAATG   |
| GTTAAGG                                    |
| GCTACCTCACCGAGCCAAATAAAGTG                 |
| CACTTTATTTGGCTCGGTGAGGTAGCTTGCCGTTGGTGGCA  |
| GAGATAG                                    |
| GCCTTTGGTACCCTCTCCCAGA                     |
| CACTTTATTTGGCTCGGTGAGGTAGCATGAAACCGTGCTTT  |
| GCAAAATTTCTTC                              |
| TCGTTGCCAATTGAAACTAAGGT                    |
| CTCAGCTCACTCCATTTTCAATCCTAAACATATTCAACAAG  |
| CCTCCCATAG                                 |
| GGTGAAAGAATGGAGCTCAAGATAAATGTCCCACCTCCTG   |
| GGGACT                                     |
| CTAAACATATTCAACAAGCCTCCCATAG               |
| CTATGGGAGGCTTGTTGAATATGTTTAGATGAAACCGTGCT  |
| TTGCAAAATTTCTTC                            |
| GGGCCGCTTCAGTCTTTCCATA                     |
| GGATTTTGTATTGCCTCACGGTTA                   |
| CTCAGCTCACTCCATTTTCAATCGTTTTTCTGTATCGAATAT |
| TCCCCGAATG                                 |
| GGTGAAAGAATGGAGCTCAAGATAATCCCAGGTTCTGGTTT  |
| GACAAG                                     |
| GTTTTTCTGTATCGAATATTCCCCGAATG              |
| CATTCGGGGAATATTCGATACAGAAAAACAGCTTTATCTTT  |
| TCCCATAACCATTAGG                           |
| TGGCTCCCTTAACTCGCTGGA                      |
|                                            |

\*numbers in brackets refer to Supplemental Figure 7C.

### PCR Screening Oligos

| Primer                   | Sequence (5'-3')            |
|--------------------------|-----------------------------|
| $\Delta Csx1_seq_For$    | GTGTTGGAGTGGGTGAGGAG        |
| $\Delta Csx1_seq_Rev$    | TCTGGAGATATTTGCCGTTAATC     |
| $\Delta Csx1_seq_Int$    | TCCCACAATAGGGAAAGTTGG       |
| Cmr2∆HD_seq_For          | GTTTTTGGGAGCACAAAGGA        |
| Cmr2∆HD_seq_Rev          | GGTTCCTCATCAAGCCACAA        |
| Cmr2∆HD_seq_Int          | TGGATTGCCTCGATTTAAGC        |
| Cmr2-D673A,D674A_seq_For | GGGTCTCTCGGATGAAGATG        |
| Cmr2-D673A,D674A_seq_Rev | TTCTGCCTTTCTCTGTTCCAA       |
| Cmr2-D673A,D674A_seq_Int | TTATGGATGGCGACGATATG        |
| Cmr2-D673A,D674A_scr_Mu  | GACTGGCAAAATTGCTAGGACTGCTGC |
| Cmr2-D673A,D674A_scr_WT  | GACTGGCAAAATTGCTAGGACATCATC |
| Cmr2-H13A,D14A_seq_For   | GTTTTTGGGAGCACAAAGGA        |
| Cmr2-H13A,D14A_seq_Rev   | TTCAGCCTCCTTTCCTGAGA        |
| Cmr2-H13A,D14A_seq_Int   | AGGAGAGCTTCTCCCCTTTG        |

| 1                          |                           |
|----------------------------|---------------------------|
| Cmr2-H13A,D14A_scr_Mu      | TTAGAGCCTTGTCTGGTGGTGCTGC |
| Cmr2-H13A,D14A_scr_WT      | TTAGAGCCTTGTCTGGTGGATCATG |
| $\Delta$ Cmr+Cst_seq_For   | TTGGAGATAGGTTCACGTGGT     |
| $\Delta Cmr+Cst\_seq\_Rev$ | AAATCCCTGATGAGCTGTGG      |
| $\Delta Cmr+Cst\_seq\_Int$ | CTGGGCTTCGGAATGGTTAAGG    |
| $\Delta Cmr\_seq\_For$     | TTGGAGATAGGTTCACGTGGT     |
| $\Delta Cmr_seq_Rev$       | GCGTGAGCCACAAATCTAGTC     |
| ∆Csa_seq_For               | CGAGATTGAAACAGGAGCTG      |
| ∆Csa_seq_Rev               | TTGGGAGGAGCTGTAATTGG      |
| $\Delta Csa\_seq\_Int$     | TCCCAGGTTCTGGTTTGACAAG    |
| $\Delta Cst\_seq\_For$     | CCTGGGGGAGAGACAGAACT      |
| ∆Cst_seq_Rev               | AAATCCCTGATGAGCTGTGG      |
| $\Delta Cst\_seq\_Int$     | ATGTCCCACCTCCTGGGGACT     |

Oligos for Target Plasmid Cloning

| Oligos            | Sequence (5'-3')                                |
|-------------------|-------------------------------------------------|
|                   | [phos]TATGGGATCCTCTGAAGTGCTCTCAGCCGCAAGGACC     |
| 7.01_TT_GGG+      | GCATACTACAAgggATCCGAGG                          |
|                   | [phos]GATCCCTCGGATcccTTGTAGTATGCGGTCCTTGCGGCT   |
| 7.01_TT_GGG-      | GAGAGCACTTCAGAGGATCCCA                          |
|                   | [phos]TATGCTCGGATcccTTGTAGTATGCGGTCCTTGCGGCTG   |
| 7.01_GT_GGG+      | AGAGCACTTCAGAGGATCCG                            |
|                   | [phos]GATCCGGATCCTCTGAAGTGCTCTCAGCCGCAAGGAC     |
| 7.01_GT_GGG-      | CGCATACTACAAgggATCCGAGCA                        |
|                   | [phos]TATGGGATCCTCTGAAGTGCTCTCAGCCGCAAGGACC     |
| 7.01_TT_tagc_1-8+ | GCATACTACAActttcaatAGG                          |
|                   | [phos]GATCCCTattgaaagTTGTAGTATGCGGTCCTTGCGGCTGA |
| 7.01_TT_tagc_1-8- | GAGCACTTCAGAGGATCCCA                            |
|                   | [phos]TATGGGATCCTCTGAAGTGCTCTCAGCCGCAAGGACC     |
| 7.01_TT_tagc_1-7+ | GCATACTACAActttcaaAAGG                          |
|                   | [phos]GATCCCTTttgaaagTTGTAGTATGCGGTCCTTGCGGCTGA |
| 7.01_TT_tagc_1-7- | GAGCACTTCAGAGGATCCCA                            |
|                   | [phos]TATGGGATCCTCTGAAGTGCTCTCAGCCGCAAGGACC     |
| 7.01_TT_tagc_1-6+ | GCATACTACAActttcaTAAGG                          |
|                   | [phos]GATCCCTTAtgaaagTTGTAGTATGCGGTCCTTGCGGCTG  |
| 7.01_TT_tagc_1-6- | AGAGCACTTCAGAGGATCCCA                           |
|                   | [phos]TATGGGATCCTCTGAAGTGCTCTCAGCCGCAAGGACC     |
| 7.01_TT_tagc_1-5+ | GCATACTACAActttcTTAAGG                          |
|                   | [phos]GATCCCTTAAgaaagTTGTAGTATGCGGTCCTTGCGGCT   |
| 7.01_TT_tagc_1-5- | GAGAGCACTTCAGAGGATCCCA                          |
|                   | [phos]TATGGGATCCTCTGAAGTGCTCTCAGCCGCAAGGACC     |
| 7.01_TT_tagc_1-4+ | GCATACTACAActttGTTAAGG                          |
|                   | [phos]GATCCCTTAACaaagTTGTAGTATGCGGTCCTTGCGGCT   |
| 7.01_TT_tagc_1-4- | GAGAGCACTTCAGAGGATCCCA                          |
|                   | [phos]TATGGGATCCTCTGAAGTGCTCTCAGCCGCAAGGACC     |
| 7.01_TT_tagc_1-3+ | GCATACTACAActtAGTTAAGG                          |
|                   | [phos]GATCCCTTAACTaagTTGTAGTATGCGGTCCTTGCGGCT   |
| 7.01_TT_tagc_1-3- | GAGAGCACTTCAGAGGATCCCA                          |
| 7.01_TT_tagc_1-2+ | [phos]TATGGGATCCTCTGAAGTGCTCTCAGCCGCAAGGACC     |

|                     | GCATACTACAActAAGTTAAGG                         |
|---------------------|------------------------------------------------|
|                     | [phos]GATCCCTTAACTTagTTGTAGTATGCGGTCCTTGCGGCT  |
| 7.01_TT_tagc_1-2-   | GAGAGCACTTCAGAGGATCCCA                         |
|                     | [phos]TATGGGATCCTCTGAAGTGCTCTCAGCCGCAAGGACC    |
| 7.01_TT_tagc_1-1+   | GCATACTACAAcAAAGTTAAGG                         |
|                     | [phos]GATCCCTTAACTTTgTTGTAGTATGCGGTCCTTGCGGC   |
| 7.01_TT_tagc_1-1-   | TGAGAGCACTTCAGAGGATCCCA                        |
| 7.01 77 / /         |                                                |
| /.01_11_rtag+       |                                                |
| 7.01 TT rtag        |                                                |
| /:01_11_ftag-       |                                                |
| 7.01 TT tage 4-8+   | GCATACTACAAGAAtcaatAGG                         |
|                     | [phos]GATCCCTattgaTTCTTGTAGTATGCGGTCCTTGCGGCTG |
| 7.01 TT tage 4-8-   | AGAGCACTTCAGAGGATCCCA                          |
|                     | [phos]TATGGGATCCTCTGAAGTGCTCTCAGCCGCAAGGACC    |
| 7.01 TT tage 2-3+   | GCATACTACAAGttAGTTAAGG                         |
|                     | [phos]GATCCCTTAACTaaCTTGTAGTATGCGGTCCTTGCGGCT  |
| 7.01_TT_tagc_2-3-   | GAGAGCACTTCAGAGGATCCCA                         |
|                     | [phos]TATGCTCGGATcccAGTCCTGTAGAGACTAATACCTTCA  |
| pJE47_nontarg_+     | ATACGCAGCACCAGGATCCG                           |
|                     | [phos]GATCCGGATCCTGGTGCTGCGTATTGAAGGTATTAGT    |
| _pJE47_nontarg_+    | CTCTACAGGACTgggATCCGAGCA                       |
|                     | [phos]TATGCTCGGATCCCAGTGAAGAATTTGACGTACAAAT    |
| 6.01_G1_GGG+        |                                                |
| 601 CT CCC          |                                                |
| 0.01_01_000-        |                                                |
| 2.01 GT GGG+        | CTCTGCTCCACTTAGAGGATCCG                        |
| 2.01_01_000+        |                                                |
| 2.01 GT GGG-        | GAAGTGCGATGAACAGGGATCCGAGCA                    |
|                     | GGTGTTGTCATATGGGTTCCTCTGAAGTGCTCTCAGCCGCA      |
| 701 NNN _F          | AGGACCGCATACTACAANNNTTCCGAGGGATCCCCCCTCT       |
| 701 NNN R           | AGAGGGGGGATCCCTCGGA                            |
|                     | [Phos]TATGGGtTCCTCTGAAGTGCTCTCAGCCGCAAGGACCG   |
| 701 NNN TCC+        | CATACTACAAtcetTCCGAGG                          |
|                     | [Phos]GATCCCTCGGAaggaTTGTAGTATGCGGTCCTTGCGGCT  |
|                     | GAGAGCACTTCAGAGGAaCCCA                         |
|                     | [Phos]TATGGGtTCCTCTGAAGTGCTCTCAGCCGCAAGGACCG   |
| _701_NNN_CCT+       |                                                |
| 701 NDNL COT        |                                                |
| /01_NNN_CC1-        |                                                |
| 701 NININ CAC $\pm$ |                                                |
| /01_NNN_CAC+        | [Phos]GATCCCTCGGA agtgTTGTAGTATGCGGTCCTTGCGGCT |
| 701 NNN CAC-        | GAGAGCACTTCAGAGGAaCCCA                         |
|                     |                                                |
| 701 NNN ATC+        | CATACTACAAatctTCCGAGG                          |
|                     | [Phos]GATCCCTCGGAagatTTGTAGTATGCGGTCCTTGCGGCT  |
| 701_NNN_ATC-        | GAGAGCACTTCAGAGGAaCCCA                         |
|                     | [Phos]TATGGGtTCCTCTGAAGTGCTCTCAGCCGCAAGGACCG   |
| 701_NNN_ACC+        | CATACTACAAacctTCCGAGG                          |
|                     | [Phos]GATCCCTCGGAaggtTTGTAGTATGCGGTCCTTGCGGCT  |
| 701_NNN_ACC-        | GAGAGCACTTCAGAGGAaCCCA                         |
| 701_NNN_AAT+        | [Phos]TATGGGtTCCTCTGAAGTGCTCTCAGCCGCAAGGACCG   |

|                                    | CATACTACAAaattTCCGAGG                          |
|------------------------------------|------------------------------------------------|
|                                    | [Phos]GATCCCTCGGAaattTTGTAGTATGCGGTCCTTGCGGCT  |
| 701_NNN_AAT-                       | GAGAGCACTTCAGAGGAaCCCA                         |
|                                    | [Phos]TATGGGtTCCTCTGAAGTGCTCTCAGCCGCAAGGACCG   |
| 701_NNN_TAC+                       | CATACTACAAtactTCCGAGG                          |
|                                    | [Phos]GATCCCTCGGAagtaTTGTAGTATGCGGTCCTTGCGGCT  |
| 701_NNN_TAC-                       | GAGAGCACTTCAGAGGAaCCCA                         |
|                                    | [Phos]TATGGGtTCCTCTGAAGTGCTCTCAGCCGCAAGGACCG   |
| 701_NNN_CTT+                       | CATACTACAActttTCCGAGG                          |
|                                    | [Phos]GATCCCTCGGAaaagTTGTAGTATGCGGTCCTTGCGGCT  |
| _701_NNN_CTT-                      | GAGAGCACTTCAGAGGAaCCCA                         |
| TAL NUMBER OF A                    | [Phos]TATGGGtTCCTCTGAAGTGCTCTCAGCCGCAAGGACCG   |
| 701_NNN_CCA+                       |                                                |
| TAL NUMBER OF A                    | [Phos]GATCCCTCGGAatggTTGTAGTATGCGGTCCTTGCGGCT  |
| 701_NNN_CCA-                       |                                                |
| TOL NUMBER OF COM                  |                                                |
| 701_NNN_CAG+                       |                                                |
| 701 NNN CAC                        | [Phos]GATCCCTCGGAactgTTGTAGTATGCGGTCCTTGCGGCT  |
| /01_NNN_CAG-                       |                                                |
| 701 NININI ACTI                    |                                                |
| /01_NNN_AC1+                       |                                                |
| 701 NININ ACT                      |                                                |
| 701_NNN_AC1-                       |                                                |
| 701 NININ ACA $\pm$                |                                                |
| 701_NNN_ACA+                       |                                                |
| 701 NININ ACA                      |                                                |
| 701_NNN_ACA-                       |                                                |
| 701 NININ $\Delta \Delta \Delta +$ |                                                |
|                                    | [Phos]GATCCCTCGGA2tttTTGTAGTATGCGGTCCTTGCGGCTG |
| 701 NNN AAA-                       | AGAGCACTTCAGAGGAaCCCA                          |
|                                    |                                                |
| 701 NNN AAG+                       | CATACTACAAaagtTCCGAGG                          |
|                                    | [Phos]GATCCCTCGGAacttTTGTAGTATGCGGTCCTTGCGGCT  |
| 701 NNN AAG-                       | GAGAGCACTTCAGAGGAaCCCA                         |
|                                    | [Phos]TATGGGtTCCTCTGAAGTGCTCTCAGCCGCAAGGACCG   |
| 701 NNN AGT+                       | CATACTACAAagttTCCGAGG                          |
|                                    | [Phos]GATCCCTCGGAaactTTGTAGTATGCGGTCCTTGCGGCT  |
| 701 NNN AGT-                       | GAGAGCACTTCAGAGGAaCCCA                         |
|                                    | [Phos]TATGGGtTCCTCTGAAGTGCTCTCAGCCGCAAGGACCG   |
| 701_NNN_GTT+                       | CATACTACAAgtttTCCGAGG                          |
|                                    | [Phos]GATCCCTCGGAaaacTTGTAGTATGCGGTCCTTGCGGCT  |
| 701_NNN_GTT-                       | GAGAGCACTTCAGAGGAaCCCA                         |
|                                    | [Phos]TATGGGtTCCTCTGAAGTGCTCTCAGCCGCAAGGACCG   |
| 701_NNN_GAC+                       | CATACTACAAgactTCCGAGG                          |
|                                    | [Phos]GATCCCTCGGAagtcTTGTAGTATGCGGTCCTTGCGGCT  |
| 701_NNN_GAC-                       | GAGAGCACTTCAGAGGAaCCCA                         |
|                                    | [Phos]TATGGGtTCCTCTGAAGTGCTCTCAGCCGCAAGGACCG   |
| 701_NNN_GAA+                       | CATACTACAAgaatTCCGAGG                          |
|                                    | [Phos]GATCCCTCGGAattcTTGTAGTATGCGGTCCTTGCGGCT  |
| _701_NNN_GAA                       | GAGAGCACTTCAGAGGAaCCCA                         |
|                                    | [Phos]TATGGGATCCTGTTCCACTAAGGACATTTGTACGTCA    |
| _601_GGG+                          | AATTCTTCACTgggATCCGAGG                         |
|                                    | [Phos]GATCCCTCGGATcccAGTGAAGAATTTGACGTACAAAT   |
| 601_GGG-                           | GTCUTTAGTGGAACAGGATCCCA                        |

|           | [phos]TATGGGATCCTGTTCCACTAAGGACATTTGTACGTCA   |
|-----------|-----------------------------------------------|
| 601_AAA+  | AATTCTTCACTaaaATCCGAGG                        |
|           | [phos]GATCCCTCGGATtttAGTGAAGAATTTGACGTACAAATG |
| 601_AAA-  | TCCTTAGTGGAACAGGATCCCA                        |
|           | [phos]TATGGGATCCTGTTCCACTAAGGACATTTGTACGTCA   |
| 601_CCC+  | AATTCTTCACTcccATCCGAGG                        |
|           | [phos]GATCCCTCGGATgggAGTGAAGAATTTGACGTACAAAT  |
| 601_CCC-  | GTCCTTAGTGGAACAGGATCCCA                       |
|           | [phos]TATGGGATCCTGTTCCACTAAGGACATTTGTACGTCA   |
| _601_TTT+ | AATTCTTCACTtttATCCGAGG                        |
|           | [phos]GATCCCTCGGATaaaAGTGAAGAATTTGACGTACAAAT  |
| 601_TTT-  | GTCCTTAGTGGAACAGGATCCCA                       |
| Pcsg_F    | AACGAAGCGGCCGCTATCGGCAAAAGG                   |
| Term_R    | AACGAAGATATCGAGGAAGCGGAGGTTCCAAG              |
| Pcsg_R    | GGATCCGATTCGTTCATATGACAACACCTCCTTGGGTTG       |
|           | GTTGTCATATGAACGAATCGGATCCCCCCTCTCTTCTCCTCT    |
| Term_F    | TTTG                                          |

## Oligos for *in vitro* Cmr2/Cmr4 Mutations

| Oligos                | Sequence (5' - 3')                         |
|-----------------------|--------------------------------------------|
|                       | GCTAATATACGCTGGAGGGGGCAGCAGTCCTAGCAATTTTGC |
| Cmr2_D673A,D674A_qc_F | CAGTC                                      |
|                       | GACTGGCAAAATTGCTAGGACTGCTGCCCCTCCAGCGTATA  |
| Cmr2_D673A,D674A_qc_R | TTAGC                                      |
|                       | CATCAAAGAGAAACTTTTTGTATACCTTGCAGCACCACCAG  |
| Cmr2_H13A,D14A_qc_F   | ACAAGGCTCTAA                               |
|                       | TTAGAGCCTTGTCTGGTGGTGCTGCAAGGTATACAAAAGT   |
| Cmr2_H13A,D14A_qc_R   | TTCTCTTTGATG                               |

## Assay Oligos for Figures 3,5 & 6

| Oligos                      | Sequence (5' - 3')                        |
|-----------------------------|-------------------------------------------|
|                             | GGCGACCGTATGCGCGTAGTGCCGTGCAGTCGCCGTACCCC |
|                             | TGAAGTGCTCTCAGCCGCAAGGACCGCATACTACAAGGGA  |
| 7.01_DNA_target [se] (2397) | GTTACTCGCGTGCACTCCGCCTTGGTGGAGCACTGA      |
|                             | TCAGTGCTCCACCAAGGCGGAGTGCACGCGAGTAACTCCCT |
|                             | TGTAGTATGCGGTCCTTGCGGCTGAGAGCACTTCAGGGGTA |
| 7.01_DNA_target [as] (2398) | CGGCGACTGCACGGCACTACGCGCATACGGTCGCC       |
|                             | TCAGTGCTCCACCAAGGCGGAGTGCACGCGAGTAACTCCCA |
|                             | ACATCATACGCCAGGAACGCCGACTCTCGTGAAGTCGGGTA |
| 7.01_DNA_bubble [as] (3124) | CGGCGACTGCACGGCACTACGCGCATACGGTCGCC       |
|                             | GGCGACCGTATGCGCGTAGTGCCGTGCAGTCGCCGTACCCA |
|                             | GTCCTGTAGAGACTAATACCTTCAATACGCAGCACCGGGAG |
| non-target_DNA_[se] (2765)  | TTACTCGCGTGCACTCCGCCTTGGTGGAGCACTGA       |
|                             | TCAGTGCTCCACCAAGGCGGAGTGCACGCGAGTAACTCCCG |
|                             | GTGCTGCGTATTGAAGGTATTAGTCTCTACAGGACTGGGTA |
| non-target_DNA_[as] (2766)  | CGGCGACTGCACGGCACTACGCGCATACGGTCGCC       |
|                             | AUUGAAAGUUGUAGUAUGCGGUCCUUGCGGCUGAGAGCA   |
| 45-mer 7.01 crRNA (RNA 1)   | CUUCAG                                    |
| 37-mer 7.01 target (RNA 2)  | CUGAAGUGCUCUCAGCCGCAAGGACCGCAUACUACAA     |

## Supplemental Figure 6 Assay Oligos

| Oligos | Sequence (5' - 3')                 |
|--------|------------------------------------|
| DNA 1  | TCGATGTAACGTATGCAAATGACAATTATTACTA |

#### **IVT Template PCR Primers**

| Oligos                | Sequence (5' - 3')                            |
|-----------------------|-----------------------------------------------|
|                       | aagcaagaattcTAATACGACTCACTATAGGGAGAGGCGACCGTA |
| 117-mer F 17 (3110)   | TGCG                                          |
| 117-mer R (3112)      | TCAGTGCTCCACCAAG                              |
| 117-mer F (3114)      | GGCGACCGTATGCG                                |
|                       | aagcaaggatccTAATACGACTCACTATAGGGAGATCAGTGCTCC |
| 117-mer R T7 (3115)   | ACCAAG                                        |
|                       | TAATACGACTCACTATAGGGAGACAACACTTAGTAGGGGGCT    |
| pJE47_IVT_T7_F (2798) | А                                             |
| pJE47_IVT_R (2801)    | GCTTCCTTAGCTGTTTCTCCA                         |

#### References

- Carte J, Pfister NT, Compton MM, Terns RM, Terns MP. 2010. Binding and cleavage of CRISPR RNA by Cas6. *RNA* 16: 2181-2188.
- Elmore JR, Yokooji Y, Sato T, Olson S, Glover CV, 3rd, Graveley BR, Atomi H, Terns RM, Terns MP. 2013. Programmable plasmid interference by the CRISPR-Cas system in Thermococcus kodakarensis. *RNA biology* **10**: 828-840.
- Farkas J, Chung D, DeBarry M, Adams MW, Westpheling J. 2011. Defining components of the chromosomal origin of replication of the hyperthermophilic archaeon Pyrococcus furiosus needed for construction of a stable replicating shuttle vector. *Applied and environmental microbiology* **77**: 6343-6349.
- Farkas J, Stirrett K, Lipscomb GL, Nixon W, Scott RA, Adams MW, Westpheling J. 2012. Recombinogenic properties of Pyrococcus furiosus strain COM1 enable rapid selection of targeted mutants. *Applied and environmental microbiology* 78: 4669-4676.
- Hale CR, Cocozaki A, Li H, Terns RM, Terns MP. 2014. Target RNA capture and cleavage by the Cmr type III-B CRISPR-Cas effector complex. *Genes & development* 28: 2432-2443.
- Hale CR, Majumdar S, Elmore J, Pfister N, Compton M, Olson S, Resch AM, Glover CV, 3rd, Graveley BR, Terns RM et al. 2012. Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. *Molecular cell* 45: 292-302.
- Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns RM, Terns MP. 2009. RNAguided RNA cleavage by a CRISPR RNA-Cas protein complex. *Cell* **139**: 945-956.
- Lipscomb GL, Stirrett K, Schut GJ, Yang F, Jenney FE, Jr., Scott RA, Adams MW, Westpheling J. 2011. Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation: construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases. *Applied and environmental microbiology* **77**: 2232-2238.