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Here we provide the details of several simulations and calculations de-
scribed in the main text of the paper. We also provide an axiomatic descrip-
tion of the problem, where in many instances, instead of studying particu-
lar functional forms of host-pathogen interactions, we consider more general
functions, which are assumed to satisfy certain biologically-motivated as-
sumption. This type of approach provides a way to generalize conclusions
of the analysis, and to ensure that these conclusions are not artifacts of the
particular choice of functional forms.

1 Different formulations of enemy-victim dy-

namics

General description. In a very general case, the enemy-victim dynamics
obey system (3) given in the main text. In our computer simulations, we
consider several particular implementations of this general system with an
explicit functional form for the enemy death rate:

ẋ = rxf̃(x, y,K)− βyg̃(x, y,K), (1)

ẏ = βyg̃(x, y,K)− ay. (2)

Here, rf̃ = f , βg̃ = g, where the functions f and g are as in equations
(3) of the main text, and we require that 0 ≤ f̃ ≤ 1 and 0 ≤ g̃ ≤ 1. For
convenience we factored out the constants r (the linear growth rate) and β
(the exploitation rate).

Two different types of growth (the function f̃) were implemented:

(1): The standard logistic model, f̃ = 1− (x+y)/K−d/r, where the popu-
lation grows exponentially, and the growth saturates as the population
size approaches the effective carrying capacity, K(1− d/r).

(2): A different law: f̃ = (1− (x + y)/K)/(x + η)− d/r. This means that
the victims grow exponentially at low numbers, then the growth slows
down to become linear, and finally, the growth saturates at a carrying
capacity.

Also, two different models were implemented for the exploitation function:

(1): The exploitation happens proportional to the density of victims: g̃ =
x/K. This is a rescaling of a standard Lotka-Volterra model.

2



Wodarz et al. Supplementary Information

(2): The exploitation rate is a growing function of victims which reaches
saturation for large population sizes: g̃ = x/(x+ y+ ǫ). This is similar
to the Beddington-DeAngelis functional response in ecology [2, 5], or
a generalization of the “frequency dependent” infection incidence in
epidemiology [11].

These functional forms, used in combination, gave rise to four different mod-
els of enemy-victim interactions that we presented as our case studies. We
list them below:

• Model 1: ẋ = rx(1− (x+ y)/K)− dx− βxy/K, ẏ = βxy/K − ay.

• Model 2: ẋ = rx(1− (x+ y)/K)− dx− βxy/(x+ y+ ǫ), ẏ = βxy/(x+
y + ǫ)− ay.

• Model 3: ẋ = rx(1−(x+y)/K)/(x+η)−dx−βxy/K, ẏ = βxy/K−ay.

• Model 4: ẋ = rx(1 − (x + y)/K)/(x + η) − dx − βxy/(x + y + ǫ),
ẏ = βxy/(x+ y + ǫ)− ay.

The equilibria. Systems of type (1-2) commonly have the following equi-
libria:

• the trivial equilibrium, x = y = 0, which is unstable;

• the enemy extinction equilibrium, characterized by x = x(0) = K,
y = y(0) = 0;

• the coexistence (or the internal) equilibrium, x = x(1) > 0, y = y(1) > 0.

The long-term dynamics of the system is defined by the latter two equilibria.
Extinction events cannot be explained by deterministic ODEs alone, and
come about as a result of stochastic dynamics, as explained below.

2 Agent-based models of enemy-victim inter-

actions

Agent-based models are models where one tracks the fate of individuals,
enemies and victims. The dynamics of the individuals is described by micro-
scopic update rules.
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2.1 Model formulation

We set up a square N ×N grid, where each location can be either empty, or
occupied by a victim or an enemy. We define the neighborhood of a given
cell to be (i) all cells in the mass-action case, (ii) the 8 nearest neighbors
in the spatial case. We define constants R, B, and A as the rates at which
reproduction, exploitation and death events are attempted (but not neces-
sarily performed, the full probabilities are given by the rules below). We
assume that the ratios of rates are preserved: R/B = r/β and A/B = a/β.
In a fixed time-interval, the grid is updated N ×N times. We implement the
following microscopic update rules. Pick a location in the grid at random.

• If the location is empty, no changes occur.

• If the location is occupied by a victim, a reproduction occurs with
probability Rf̃(X, Y,K), where and X and Y are the numbers of vic-
tims and enemies in the neighborhood of the chosen location. As the
result of the reproduction, the victim places its offspring in a randomly
chosen empty spot in its neighborhood. By definition, if X + Y = K
(that is, no empty spots exist in the neighborhood), f̃(X, Y,K) = 0,
and reproduction will not occur.

• If the location is occupied by an enemy, death occurs with probability A
(the spot becomes empty). Alternatively, an exploitation event occurs
with probability Bg̃(X, Y,K). No changes occur with probability 1 −
A−Bg̃(X, Y,K).

The agent-based algorithm presented here is a generalization of the algorithm
that appears in figure 1 of the main text. It helps create an agent-based
simulation equivalent to the ODE model (1-2) with any given choices of the
functions f̃ and g̃. This algorithm was implemented in simulations of figure
5 of the main text.

For the mass-action system, the equations for average quantities governed
by the above rules can be derived. They are given by

d〈X〉/dt = R(〈Xf̃(X, Y,K)〉 − B〈Y g̃(X, Y,K)〉, (3)

d〈Y 〉/dt = B〈Y g̃(X, Y,K)〉 − A〈Y 〉, (4)

where the angular brackets denote the expected values. Unless functions f̃
and g̃ are constants, the above equations involve higher moments, and as
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with most nonlinear stochastic processes, the system is not closed. How-
ever, if we simply decouple the equations by replacing 〈Xf̃(X, Y,K)〉 →
〈X〉f̃(〈X〉, 〈Y 〉, K) and 〈Y g̃(X, Y,K)〉 → 〈Y 〉g̃(〈X〉, 〈Y 〉, K), we obtain equa-
tions similar to (1-2). The two systems become exactly the same after we
rescale time t → tB/β.

The decoupling procedure used here can be regarded as the simplest type
of a moment closure technique, where we assume that the covariance of X
and Y is small. The resulting system of ODEs (system (1-2)) does not
exactly describe the behavior of the means (system (3-4) does), but is known
to have similar properties in many contexts, especially when steady-states
are concerned. A more precise approximation of the mean behavior can be
obtained when decoupling by a moment closure technique is performed at
higher orders, see e. g. [10].

A typical agent-based simulation performed in this paper uses a 30× 30
grid. The initial configuration contains a 5× 5 square filled with enemies in
the middle, immersed in a bigger (13 × 13) square containing victims, with
the rest of the grid being empty.

2.2 Alternative methodologies for studying agent-based
model dynamics.

In this paper, we considered an agent-based model where individuals can
only interact with their nearest neighbors, i.e. interactions are spatially re-
stricted. In the past, techniques have been developed to describe spatial
systems of this nature with ordinary differential equations (ODEs), using
pair approximation methods [6, 14, 12, 13, 4]. We implemented those meth-
ods but found that this does not provide a sufficiently good description of
the outcomes and the dynamics. The dynamics tended to fall somewhere
between the outcome observed in the mass-action ODE (that is, the ODE
describing the system where mass-action rules apply over the whole domain)
and the true spatial dynamics observed in the simulations of the agent-based
model. In fact, in many cases the pair approximation only provided a small
correction to a mass-action description, failing to describe the dynamics of
a spatially-restricted system. More details about the accuracy of the pair
approximation method will be provided elsewhere [16]. Hence, this method
was not used to study the spatial system and will not be further discussed.
Instead, we obtained sufficient understanding of the spatial system through a
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combination of extensive numerical simulations and the local ODE analysis,
as explained in the main text.

2.3 Time to extinction

In this section we demonstrate that the graphs of figure 2 of the main text
do not change significantly as we change the cut-off time. Figure S1 presents
the extinction/persistence plots that were generated for two different cut-off
times, T = 3 × 105 (a) and T = 3 × 107 (b). The first of these graphs is
identical to that appearing in the main paper, figure 2a(ii), and is given for
comparison. The graph in figure S1(b) corresponding to longer cut-off times
only includes the relevant parts of the parameter space where we observe
existence/persistence boundaries. This was done to reduce the computational
cost of these very long simulations. Comparing the two graphs in figure S1
we can see that the location of the boundaries does not depend significantly
on the cut-off time. This illustrates the statement that in the blue region of
coexistence, the system is found in a long-lived quasi-steady state.

(a) (b)

R/B R/B

A
/B

A
/B

Figure S1: Agent-base model simulations performed for two different cut-off times:
T = 3× 105 (a) and T = 3× 107 (b). The figure in panel (a) is identical to figure 2a(ii) of
the main text. Each point represents the outcome of a single run. Red indicates extinction
of host and pathogen, blue indicates coexistence, and gray indicates persistence of the
host in the absence of the pathogen. Above the white and below the black lines, the local
equilibrium number of hosts and pathogens, respectively, is greater than approximately
one. Above the yellow line, the pathogen fails to invade. The parameters are as in figure
2a(ii) of the main text.
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3 Metapopulation models of enemy-victim in-

teractions

3.1 Model formulation

The other type of models that we use is metapopulation models. Metapop-
ulation models consist of individual patches, such that the rules specified by
equations (1-2) apply in each patch, and the value K corresponds to the local
carrying capacity, K → Kpatch. The individual patches communicate with
each other, such that enemies and victims can migrate to the neighboring
patches with certain rates, which we denote µx and µy for victims and ene-
mies respectively. Let us denote by xi and yi the number of victims and ene-
mies in patch i, and introduce the short-hand notation, gi = g(xi, yi, Kpatch),
fi = f(xi, yi, Kpatch). The deterministic spatial system has the following
form:

ẋi = rxif̃i − βyig̃i +
µx

2
(xi−1 − 2xi + xi+1), (5)

ẏi = βyig̃i − ayi +
µy

2
(yi−1 − 2yi + yi+1), 2 ≤ i ≤ n− 1, (6)

This system is equipped with the boundary conditions, where species in
patches 1 and n only migrate to sites 2 and n − 1 respectively. System
(5-6) is a generalization of system (2) of the main text. In the latter system,
we considered a particular model of host-pathogen interaction. In system
(5-6) we study more general enemy-victim dynamics. Methods developed
here for this system were used in simulations of figure 4 of the main text.

As with the stochastic process described above being a generalization of
the agent-based model used in the main body of the paper, the metapopula-
tion model of system (5-6) is a generalization of the metapopulation model
used in the main body of the paper.

The stochastic simulation is set up as a standard Gillespie algorithm [7, 8].
The simulation proceeds as a sequence of time-steps. At each time-step, j, let
us denote the local numbers of victims and enemies as x

(j)
i , y

(j)
i . The different

terms in system of equations (5-6) define the relative probability weights of
different events that could happen at the next update. Let us form the sum

Σ(j) =
n

∑

i=1

(

rx
(j)
i f̃

(j)
i + βy

(j)
i g̃

(j)
i + ay

(j)
i + µxxi + µyyi

)

.
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Then the probability that at patch i, an enemy will die is given by

ay
(j)
i /Σ(j),

the probability that at patch i, an exploitation event will take place is given
by

βx
(j)
i g̃

(j)
i /Σ(j),

the probability that a victim will migrate from patch i to patch i+1 is given
by

(µx/2)x
(j)
i /Σ(j),

and so on. Guided by these probabilities, we pick the next event and update
the system accordingly. For example, if the next event is a death of an
enemy in patch i, we take y

(j+1)
i = y

(j)
i − 1, and keep the rest of the variables

the same. If the next event is an exploitation event in patch i, we take
y
(j+1)
i = y

(j)
i + 1, x

(j+1)
i = x

(j)
i − 1, and keep the rest of the variables the

same. If the event is a migration of a victim from patch i to patch i+ 1, we
take x

(j+1)
i = x

(j)
i − 1, x

(j+1)
i+1 = x

(j)
i+1 + 1. Finally, we determine the length

of the time-step between state (j + 1) and state (j) from the exponential

distribution with the constant σ(j): P (τ) = Σ(j)e−Σ(j)τ .
A note on the migration rates: in the agent-based models implemented

here, the agents do not move from spot to spot, and only spread by prolifer-
ation. In contrast, in the metapopulation models, enemies and victims mi-
grate to the two nearest patches with a rate µx and µy, respectively (moving
through space by individuals placing their offspring to the nearest neighbor-
ing spots is not a natural choice under the metapopulation framework). In
the metapopulation model, we assume that the migration rates µx = µy. In
this case, no additional asymmetries are introduced that are not found in the
agent-based model.

A typical simulation performed in this paper contains n = 100 patches,
with carrying capacity Kpatch = 100. The initial configuration consists of
one patch in the middle containing 0.7Kpatch victims and 0.3Kpatch enemies,
surrounded by 10 patches (5 on each side) containing only victims at carrying
capacity. The rest of the patches are empty (xi = yi = 0).

A ”mass-action” variant of the metapopulation is obtained in the follow-
ing way: we consider only 1 patch, with K = nKpatch, and use the Gillespie
algorithm corresponding to its local dynamics. For such simulations, the
initial condition used is 0.7K victims and 0.3K enemies.
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3.2 1D and 2D models

Most of the metapopulation simulations presented in the paper were per-
formed for metapopulations consisting of a one-dimensional array of patches,
where migration was allowed between adjacent patches. The question arises
whether the behavior would change in a two-dimensional array of metapop-
ulation patches.

Intuitively, in the agent-based model we expect the 2D system to behave
very differently compared to a 1D system. A 2D habitat in an agent-based
model provides refuge possibilities for the hosts which are lacking in a 1D
chain of agents. A 1D setting does not easily allow persistence, since suscep-
tible agents may not escape infecteds.

It is interesting that the relationship between 1D and 2D scenarios is quite
different for the metapopulation. There, it turns out that the observed be-
havior in a 2D metapopulation is very similar to that in a 1D metapopulation.
This is demonstrated in figure S2, which was created for a two-dimensional
10 × 10 array of metapopulation patches. This figure should be compared
with figure 7a(ii) of the main text, created for a 1D array of 100 metapop-
ulation patches. The figures show persistence/existence outcomes for the
metapopulation system governed by equations (5-6) (Model 1). We observe
nearly identical behavior in one and two dimensions. Unlike in agent-based
models, the dimensionality of metapopulations does not make a significant
difference.

The reason for this difference between agent-based models and metapop-
ulations is as follows. In the agent-based model, one spot corresponds to
a single individual. In the metapopulation model, a patch corresponds to
a local population evolving according to mass-action rules. Effectively, the
local mass-action dynamics within each patch act like an extra dimension.
Therefore, a 1D chain of metapopulations does not possess the same degree
of spatial restriction as a 1D row of agents in an agent-based model.

There is one slight difference between the 2D metapopulation figure plot
in figure S2 and the 1D figure 7a(ii) in the main text. In the 1D metapopu-
lation plot, there is a small region of coexistence below the white line (cor-
responding to S(1) = 1). This region is almost non-existent in the 2D figure.
The reason for the persistence in the 1D metapopulation is a formation of
non-equilibrium macroscopic structures along a 1D chain of 100 patches. In
the 2D metapopulation, these structures have a harder time forming because
the linear size of a 2D array of patches in this case is only 10. For larger 2D
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Figure S2: Two-dimensional metapopulation model, to be compared with 1D metapop-
ulation model, figure 7a(ii) in the main text. Each point represents the outcome of a single
run. Red indicates extinction of host and pathogen, blue indicates coexistence, and gray
indicates persistence of the host in the absence of the pathogen. Above the white and
below the black lines, the local equilibrium number of hosts and pathogens, respectively,
is greater than approximately one. Above the yellow line, the pathogen fails to invade.
There are n = 100 patches arranged in a 10× 10 square array. The rest of the parameters
are as in figure 7a(ii) of the main text.

metapopulations, these macroscopic structures will form in 2D like they do
in 1D.

4 Coexistence threshold in metapopulations

In this section we discuss the meaning of the threshold given by the local
equilibrium population equal to one. The theoretical results below are de-
rived for a metapopulation model with large diffusion. In the main paper,
they are confirmed numerically for the agent-based model in a continuous
habitat.

4.1 Theoretical considerations

We start with a population that undergoes a nonlinear birth-death process,
and can be described by a stochastic variable i. Host-pathogen models con-
sidered in this paper are slightly more complicated because they are described
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by two stochastic variables. The arguments presented here can be generalized
to such systems, and the results are confirmed by numerical experiments, see
below. The infinitesimal probabilities of change are given by

P ↑(i) ≡ Prob(i → i+ 1) = λ(i)∆t,

P ↓(i) ≡ Prob(i → i− 1) = µ(i)∆t,

Prob(i → i) = 1− Prob(i → i+ 1)− Prob(i → i− 1).

We assume that
λ(0) = µ(0) = 0. (7)

We further assume the existence of a threshold value of i, X̄, such that the
following holds:

i < X̄ ⇒ P ↑(i) > P ↓(i)

i > X̄ ⇒ P ↑(i) < P ↓(i)

i = X̄ ⇒ P ↑(i) = P ↓(i) = 1/2.

Then the mean population size will be around x̄. However, the smaller the
value of x̄, the faster fluctuations will lead to a stochastic extinction of this
system.

Next, let us assume a subdivision of this system into n patches (a metapop-
ulation model). In each patch, if it is isolated from others, we have a birth-
death process defined similarly to the one above, except the threshold value
X̄ is replaced by a scaled-down threshold,

x̄ =
X̄

n
.

Denoting the local probabilities by lower-case letters, we have

i < x̄ ⇒ p↑(i) > p↓(i)

i > x̄ ⇒ p↑(i) < p↓(i)

i = x̄ ⇒ p↑(i) = p↓(i) = 1/2.

If the patches are disconnected, the expected value of the total population
size will again be X̄, but the system will be even less stable because the local
threshold values are smaller than in the undivided system.

If we assume a certain amount of migration among patches, the process
stops being one-dimensional. A simple description is impossible. We know
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from numerical simulations that such systems tend to be more stable than
the disconnected ones. The amount of fluctuations decreases with increasing
migration rate and increasing n.

To make the description possible, we can make an assumption of very
large diffusion. This means that the individuals in the patches are subject
to migration, and the time-scale of migration is a lot faster than that of the
birth-death process. In the limit of infinite migration, we can assume that
the population has a chance to diffuse and reach a uniform state after each
birth or death event. This allows us to use a one-dimensional description
once more.

Suppose the total population size is i. Then each patch contains on
average i/n individuals. Non-integer values however are not allowed, which
means that if i/n /∈ N, then all patches will contain either k ≤ il ≡ [i/n]
individuals or k ≥ ih ≡ [i/n] + 1 individuals, where the square brackets
denote rounding down. Let us denote by φ(k) the relative probability that
an event will happen in a patch with k individuals. The functional form of
φ(k) is unimportant as long as

∑

k≤il

φ(k) > 0,
∑

k≥ih

φ(k) > 0,

and

φ(il) ≫ φ(il − 1) ≫ φ(il − 2) . . . , φ(ih) ≫ φ(ih + 1) ≫ φ(ih + 2) . . . . (8)

The former condition states that there will be states with the number of
individuals both greater and smaller than i/n. The latter condition states
that deviations from a uniform distribution of individuals are small. This is
guaranteed by a large diffusion in the system. In fact, in the limit of infinite
diffusion we can assume φ(k) = 0 with k > ih or k < il.

We can write down the probability for the system to increase or decrease
the number of individuals:

P ↑(i) =
∑

k≤il

φ(k)p↑(k) +
∑

k≥ih

φ(k)p↑(k),

P ↓(i) =
∑

k≤il

φ(k)p↓(k) +
∑

k≥ih

φ(k)p↓(k).

Let us investigate the properties of a state where i ≈ X̄. Let us suppose
that x̄ /∈ N. Then we have the following patterns.

12



Wodarz et al. Supplementary Information

• Suppose that x̄ > 1. Then all values of i can be divided into three
groups: Group 1 consists of all i such that ih, il > x̄. In the limit of
large diffusion, for this group we have P ↑(i) > P ↓(i), see inequality (8).
Group 2 consists of values of i such that ih, il < x̄ (this group consists
of values i < n). For this group P ↑(i) < P ↓(i). Group 3 consists of all
i such that il < x̄, ih > x̄. Group 3 is an attractive set in the following
sense. If the system is in a state in group 1, it will on average decline
until it enters a state in group 3. If on the other hand the system is in
state 2, it will increase until it reaches a state in group 3.

• If x̄ < 1, group 2 does not exist, and group 3 has il = 0 and ih = 1. We
have p↓(0) = p↑(0) = 0 (condition (7)). Therefore for group 3, we have
P ↑ =

∑

k≥1 φ(k)p
↑(k) < P ↓ =

∑

k≥1 φ(k)p
↓(k), which follows from the

fact that ih = 1 > x̄. This means that as the number of individuals
falls below X̄, it will on average continue to decrease.

This argument explains the fundamental difference between systems with
x̄ > 1 and x̄ < 1. In the former case, if the fluctuations are not too large, the
system will have a nonzero quasi-steady state (fluctuations can be reduced by
increasing the number of patches, n). In the latter case, no such quasi-steady
state exists.

4.2 Numerical validation

This argument presented for simplicity for birth-death processes, can be
extended to enemy-victim (e.g. host-pathogen) systems. In figure S3 we
show the results of a numerical implementation of a metapopulation sys-
tem, with the stochastic host-pathogen dynamics is modeled after equations
(5-6), Model 1, with a very large migration rate. The parameters r, β, µ,
and Kpatch were kept constant, and a changed. To simulate the limit of
infinite migration, the following algorithm was employed. After each di-
vision/death/infection update performed in accordance with the Gillespie
method, we randomly redistributed all the individuals among the patches,
resulting in a nearly uniform distribution. For each value of a/β, we per-
formed on average 600 (and at least 200) simulations. The outcome by the
fixed cut-off time t (coexistence of extinction) was recorded, and then the
percentage of runs that ended up in persistence/extinction states were plot-
ted. As the value of a/β changes from 0 to 0.05, the system crosses the
threshold imposed by the condition S(1) = 1. Since S(1) = aKpatch/β, this
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Figure S3: The threshold effect of crossing the S(1) = 1 line. For a host-pathogen
metapopulation system with large diffusion, the percentage of runs is plotted that ended
up in extinction (persistence), for each value of parameter a. The other parameters are:
β = 1, Kpatch = 100, n = 100, r = 100, and the cut-off time of the simulations is
t = 3× 105.

threshold is given by a/β = 0.01 for the given parameter values. As we can
see from the graph, for a/β < 0.01, the overwhelming majority of the runs
resulted in extinction, and for a/β > 0.01, in persistence, with a very sharp
transition between the two states.

The graphs of figure S4 show how the above theory applies to metapop-
ulations with finite migration rates. In this figure, we ran simulations and
recorded extinction (red) and persistence (blue) outcomes much like in figure
7a(ii) of the main text, but the parameters that we varied were a (the verti-
cal axis) and Kpatch (horizontal axis). The rest of the parameters were kept
constant, including the total population size nKpatch (such that n is different
for different runs). The two figures S4(a) and (b) differ by the choice of the
migration parameter, µ = 1 for figure (a) and it is µ = 10 for figure (b). The
gray line represents the theoretical threshold S(1) = 1, which corresponds to
a/β = 1/Kpatch. We observe the following patterns:

• For finite migration rates, there is an area corresponding to S(1) > 1
which is characterized by population extinction.

• As µ increases, the existence threshold approaches the theoretically
predicted threshold S(1) = 1. This is predicted by the theory above.
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Figure S4: Metapopulations with a finite migration rate: the threshold effect of crossing
the S(1) = 1 line. Each point represents the outcome of a single run. Red indicates
extinction of host and pathogen and blue indicates coexistence. The gray line corresponds
to S(1) = 1. The parameters Kpatch and a are varied. The total size of the metapopulation
is kept constant, nKpatch = 104. The migratio nrate is given by (a) µ = 1 and (b) µ = 10.
The other parameters are: β = 1, r = 100. For cut-off time of the simulations, see legend
of figure 7 in the main text.

• For each migration rate, the proximity to the theoretical threshold is
closer for a larger number of patches (which corresponds to smaller
Kpatch). This is also predicted as a larger number of patches decreases
fluctuations in the system.

We conclude that the theory presented here is applicable to simulations with
finite migration parameters, as long as the number of patches is not too small.

5 General conditions required for space to

promote extinction

A central message of this paper is that under certain circumstances, mass-
action dynamics can promote coexistence. In other words, it can happen
that a mass-action systems exhibits a stable coexistence solution, while in
the spatially distributed system with the same parameters no coexistence is
observed, and either the enemies, or both species go extinct.

As mentioned before, coexistence is more likely for larger values of the
equilibrium x(1). These values, in turn, are defined by the system parameters,
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and in particular, by the parameter K. This helps us explain how spatial
interactions (translated into the effective carrying capacity, K) can influence
the coexistence of enemies and victims.

If we can show that in a given model, the mass-action equilibrium value
for x is larger than that in a spatially restricted system, then in such a
model mass-action rules will have a tendency to promote coexistence of the
species. Therefore, in order to explain the role of space for the coexistence of
species, we must investigate how the equilibrium x(1) depends on the effective
carrying capacity, K. In what follows, we address the general question: in
what types of enemy-victim interactions does x(1) negatively correlate with
K?

Coexistence solution. The dynamics of enemies and victims is described
by the general system given by equation (3) of the main text, with the fol-
lowing assumptions (see also [1]):

∂f

∂x
≤ 0,

∂f

∂y
≤ 0,

∂f

∂K
> 0, (9)

∂g

∂x
> 0,

∂g

∂y
≤ 0, (10)

∂F

∂g
≥ 0. (11)

A nontrivial fixed point corresponding to the coexistence solution is given by
the system,

xf(x, y,K)− yg(x, y,K) = 0, (12)

F (g(x, y,K), x, y) = 0. (13)

Let us assume that equation

F (γ, x, y) = 0

has a solution, γ(x, y). This describes the relationship between the exploita-
tion function, g(x, y,K), and the variables, (x, y), at equilibrium. Substitut-
ing this solution into the first equilibrium equation, we obtain

xf(x, y,K)− yγ(x, y) = 0. (14)
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This implicitly defines the function y = ỹ(x,K). Finally, the steady-state
solution can be obtained: the steady-state level x = x(1) is given by equation

F (γ(x, ỹ(x,K)), x, ỹ(x,K)) = 0, (15)

and y(1) = ỹ(x(1), K).

Stability of the coexistence solution. Let us investigate stability of
solution (x(1), y(1)). The Jacobian of the system is given by

J =

(

f + xfx − ygx xfy − g − ygy
y ∂F

∂g
gx + y ∂F

∂x
F + y ∂F

∂g
gy + y ∂F

∂y

)

Here we used the short-hand notation fx = ∂f

∂x
, and similarly with fy, gx

and gy. All the functions are assumed to be evaluated at the steady state,
(x(1), y(1)). Note that F = 0 at the steady state. A necessary condition of
stability of the solution (x(1), y(1)) is that Det(J) ≥ 0. This condition is
equivalent to :

Det(J) = (f+xfx−ygx)(y
∂F

∂g
gy+y

∂F

∂y
)−(y

∂F

∂g
gx+y

∂F

∂x
)(xfy−g−ygy) ≥ 0.

Let us differentiate equation (12) with y = ỹ(x,K), with respect to x:

f + xfx + xfy
∂ỹ

∂x
−

∂ỹ

∂x
g − ỹgx − ỹgy

∂ỹ

∂x
= 0.

From this, we can solve for ∂ỹ

∂x
:

∂ỹ

∂x
= −

f + xfx − ygx
xfy − g − ygy

.

Using this expression, we can rewrite the determinant, Det(J):

Det(J) = (xfy −G− ygy)y

[

−
∂ỹ

∂x

(

∂F

∂g
gy +

∂F

∂y

)

−

(

∂F

∂g
gx +

∂F

∂x

)]

.

Note that the first multiplier in the parentheses in the expression for Det(J)
is negative. Therefore, a necessary stability condition for solution (x(1), y(1))
is given by

∂ỹ

∂x

(

∂F

∂g
gy +

∂F

∂y

)

+

(

∂F

∂g
gx +

∂F

∂x

)

≥ 0. (16)
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The dependence of the steady state victim level, x(1), on K. The
steady-state level of x = x(1) is defined implicitly by equation (15). To
determine the sign of dx(1)/dK, let us differentiate equation (15) with respect
to K. We obtain:

∂F

∂g

(

gx
dx(1)

dK
+ gy

∂ỹ

∂x

dx(1)

dK
+ gy

∂ỹ

∂K
+ gK

)

+
∂F

∂x

dx(1)

dK
+
∂F

∂y

(

∂ỹ

∂K
+

∂ỹ

∂x

dx(1)

dK

)

= 0,

where all the derivatives are taken at the point x(1), ỹ(x(1), K). This can be
rewritten as

dx(1)

dK

[

∂ỹ

∂x

(

∂F

∂g
gy +

∂F

∂y

)

+

(

∂F

∂g
gx +

∂F

∂x

)]

= −

[

∂F

∂g

(

gy
∂ỹ

∂K
+ gK

)

+
∂F

∂y

∂ỹ

∂K

]

.

(17)
Note that the expression in the square brackets in the left hand side of this
equation appears in the stability condition for the steady state, inequality
(16), and is nonnegative. Therefore the sign of dx(1)/dK coincides with the
sign of the right hand side of equation (17). To proceed, we need to determine
the sign of the derivative, ∂ỹ

∂K
.

Dependence of the function ỹ(x,K) on the carrying capacity. First,
let us consider the function γ(x, y), and determine its dependence on its vari-
ables. This function is given implicitly by equation (13). Let us differentiate
equation (13) with G(x, y,K) = γ(x, y) with respect to y:

∂F

∂g

∂γ

∂y
+

∂F

∂y
= 0 ⇒

∂γ

∂y
= −

∂F

∂y
/
∂F

∂g
.

At this point let us make an additional assumption on the numerical response
function F :

∂F

∂y
≤ 0.

Then we have the following inequality:

∂γ

∂y
≥ 0. (18)

The next step is to determine the dependence of ỹ(x,K) on K. The function
ỹ(x,K) is given implicitly by equation (14). Let us differentiate this equation
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with respect to K:

x

(

fy
∂ỹ

∂K
+ fK

)

−
∂ỹ

∂K
γ − ỹ

∂γ

∂y

∂ỹ

∂K
= 0.

From this we obtain,

∂ỹ

∂K

[

xfy − γ −
∂γ

∂y

]

= −xfK .

The expression in the square brackets on the left hand side is negative because
of the inequality (18), and the right hand side is negative. We conclude that

∂ỹ

∂K
> 0.

Conditions for a positive correlation between the steady-state vic-
tim level and the carrying capacity. The sign of the derivative dx(1)/dK
is given by the right-hand side of equation (17),

dx(1)

dK
∝ −

[

∂F

∂g

(

gy
∂ỹ

∂K
+ gK

)

+
∂F

∂y

∂ỹ

∂K

]

.

The following sufficient condition for the positivity of dx(1)/dK can be for-
mulated: if

∂F

∂g
> 0,

∂F

∂y
≤ 0, (19)

then condition

gy
∂ỹ

∂K
+ gK < 0 (20)

guarantees that dx(1)/dK > 0. In particular, we have two important exam-
ples:

• The exploitation function is independent of the number of enemies, and
it is negatively correlated with the carrying capacity:

∂g

∂y
= 0 and

∂g

∂K
< 0. (21)

An example of such a law is given on page 2 of this document, see
model (1) of exploitation function. In general, this case corresponds to
the situation where the exploitation function scales with the density of
the victims, rather than with their total number [3].
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• The exploitation function is independent of the carrying capacity, and
it is negatively correlated with the number of enemies:

∂g

∂y
< 0 and

∂g

∂K
= 0. (22)

Biologically, this can be interpreted as interference/competition among
enemies [2, 5, 15], or as frequency-dependent transmission in epidemi-
ology [3]. An example of such a law is given on page 2 by model (2) of
exploitation function.

Conditions (21) or (22) guarantee the positivity of dx(1)/dK. Note that
assumptions (19) are consistent with the examples given in [1]. Further note
that we do not have to make any assumptions about the dependence of F on
the function x.

Finally we emphasize that in some (exotic) examples of the victim growth
rate and the exploitation function, the conditions above may not guarantee
that the mass-action model promotes coexistence. Condition (20), although
enough to ensure that dx(1)/dK > 0, may not lead to a significant extension
of the region x(1) > 1 for larger values of K. Further, and more subtle,
conditions are required to guarantee that. We have however not found any
biologically relevant examples where such further conditions would be neces-
sary.

6 Turing instability

It has been observed before [9] that Turing instability [17] can destroy coex-
istence equilibria in spatially-distributed systems. In this section we demon-
strate that the effect we report in the present paper is not of the same na-
ture. In other words, the destabilization of coexistence solution in spatially-
extended systems reported here is not caused by Turing instability.

Consider system (1-2), where the carrying capacity, K, corresponds to the
mass-action model. Suppose that the system possesses an internal equilib-
rium, (x(1), y(1)). Consider the stability of this equilibrium by writing down
the Jacobian of system (1-2) evaluated at this solution:

A =

(

a11 a12
a21 a22

)

.

20



Wodarz et al. Supplementary Information

The eigenvalues of this system satisfy the equation,

λ2 − λTr(A) +Det(A) = 0.

The solution is stable if the following conditions are satisfied:

Tr(A) < 0, (23)

Det(A) > 0. (24)

As mentioned before, adding spatial constraints to this system can be imple-
mented by presenting it as a metapopulation model, which amounts to two
changes:

• The system is split into a number of patches, such that the rules spec-
ified by equations (1-2) apply in each patch except the value K now
corresponds to a smaller, local carrying capacity, K → Kpatch.

• The individual patches communicate with each other, which requires
additional parameters, mx and my, related to the diffusion coefficients
for the two species.

Now, the model can be approximated by the following PDEs:

ẋ = rxf̃(x, y,Kpatch)− βyg̃(x, y,Kpatch) +Dx∆x, (25)

ẏ = βyg̃(x, y,Kpatch)− ay +Dy∆y. (26)

Here, the diffusion coefficients Dx = mxh
2 and Dy = myh

2 are related to
the migration rates by means of the scaling factor, h, describing the distance
between neighboring patches. Note that there is a number of ways in which
the functions f̃ and g̃ change with the carrying capacity K. For example,
in Model 1, K can be scaled out and the functions f̃ and g̃ only depend on
the densities, x/K and y/K, and not on the absolute numbers of the two
species. The stability condition for the coexistence solution in this case is
simply

a

β
< 1,

that is, it is the same in individual patches as it is in the full mass-action
system. In other cases (e.g. models 2-4), we can assume that the parameters
ǫ and η scale with K, or that they remain constant as K changes. These
choices have to be dictated by the particular biological properties of the
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underlying models. In this paper we kept parameters ǫ and η independent
of K. As a result, the stability properties of the coexistence solution change
with K. More precisely, a stability condition for coexistence solutions in
models 2 and 4 is

a

β
<

K

K + ǫ
,

that is, for smaller values of K the coexistence region was slightly smaller.
However in practical terms, since ǫ ≪ K for both the mass-action and
metapopulation models, the shift in the stability line is negligible.

In the analysis below we assume that the coexistence solution remains
stable in each of the patches of the spatially-distributed system, that is,
inequalities (23-24) hold with the carrying capacity Kcol. Following the usual
procedure, we present a perturbation as a sum of Fourier components, and
study the stability properties of each component with frequency q. The
modified Jacobian matrix is given by

Aq = A−

(

Dxq
2 0

0 Dyq
2

)

.

In particular,

Tr(Aq) = Tr(A)− (Dx +Dy)q
2 < Tr(Aq), (27)

Det(Aq) = Det(A)− q2(Dxa22 +Dya11) +DxDyq
4. (28)

If Tr(A) < 0, then adding spatial effects cannot reverse this inequality. To
find out whether the new determinant can be negative, we note that the
minimum of the expression Det(Aq) is achieved for

q2 = q2m =
a22Dx + a11Dy

2DxDy

.

If however the expression for q2m is negative, the minimum is achieved at
q = 0 (that is, in the absence of a spatial structure). Thus Turing instability
takes place only if

a22Dx + a11Dy > 0. (29)

If the condition Dx = Dy holds, then the above inequality is impossible
because of the stability condition (23). Therefore, the observed enlargement
of the coexistence region in the mass-action systems is not a result of a Turing
instability.
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In the case where Dx 6= Dy, a necessary condition for Turing instability
(29) can be satisfied, and the existence of a Turing instability cannot be ex-
cluded. However, in such cases the Turing instability would shift the stability
line (a/β ≈ 1 in all 4 models presented here), thus making the upper bound-
ary of the coexistence region in spatially-extended systems shift downward.
This is very different from the phenomenon reported here, where the lower

boundary of the coexistence region is shifted upward in spatial models.
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