Developmental Cell, Volume 36

Supplemental Information

Phosphorylation-Dependent Activation

of the ESCRT Function of ALIX

in Cytokinetic Abscission and Retroviral Budding

Sheng Sun, Le Sun, Xi Zhou, Chuanfen Wu, Ruoning Wang, Sue-Hwa Lin, and Jian Kuang

Figure S1. Supplemental data related to Figure 1. (A) IE and ME were prepared with EB freshly supplemented with 1 μ M microcystin and 1 mM ATP, and immunoprecipitated with indicated anti-ALIX antibodies. Input proteins and immunocomplexes were immunoblotted with indicated antibodies. (B) ME was first incubated with the TNT product of myc or myc-TSG101 at 4°C for 2 h, and then treated with CIP. IE, ME and the two samples of differently treated ME were immunoprecipitated with indicated antibodies, followed by immunoblotting with indicated antibodies. (C) PNSs from asynchronously growing HEK293 cells (Interphase cells) or mitotically arrested HEK293 cells (Mitotic cells) were fractionated by membrane flotation centrifugation. Same volumes of aliquots were taken and immunoblotted with indicated antibodies; membrane (M) and soluble (S) protein fractions are indicated. The average percentages of ALIX in the M fraction and SDs were determined from three independent experiments and plotted.

Figure S2. Supplemental data related to Figure 3. (A) Left: The phosphospecific sequence recognized by the #4381 antibody, and its alignment with the S718 surrounding sequence in ALIX. Right: SDS-denatured IE and ME (dIE and dME) were immunoblotted with the #4381 antibody after Ponc staining, and the arrow indicates the position of ALIX. (B) Left: Sequence of the phosphorylated ALIX peptide used for production of the anti-pS2 antibody. Right: The dIE and dME were immunoblotted with the anti-pS2 antibody after Ponc staining, and the arrow indicates the position of ALIX. (C) GST-ALIX_{nPRD} was mock-treated or phosphorylated with MEE or MEE plus CIP, and then immobilized onto GSH beads. Bound proteins were immunoblotted with the anti-pS2 antibody. (D) Immature oocytes and progesterone-matured oocyte extracts (MOE) were immunoblotted with MPM2. (E) GST-ALIX_{nPRD} was phosphorylated with freshly prepared IOE, MOE, or MOE plus CIP, and then immobilized onto GSH beads. Bound proteins were immunoblotted with the anti-pS2 entibody. (F) WT and S2A GST-ALIX_{nPRD} were mock treated or phosphorylated with MOE, and then immobilized onto GSH beads. Bound proteins were immunoblotted with the anti-pS2 antibody. Right for MOE, and then immobilized onto GSH beads. Bound proteins were immunoblotted with the anti-pS2 antibody. (F) WT and S2A GST-ALIX_{nPRD} were mock treated or phosphorylated with MOE, and then immobilized onto GSH beads. Bound proteins were immunoblotted with the anti-pS2 antibody.

Figure S3. Supplemental data related to Figure 5. (A&B) HeLa cells were transfected with indicated agents and cultured as done for Fig. 5A. Cell lysates were immunoblotted with indicated antibodies to visualize ALIX, mCherry-CHMP4b (A), mCherry-TSG101 (B) and actin. Fixed cells were immunostained with anti-tubulin antibody (green), and counterstained with DAPI (blue). The average percentages of mCherry positive cells with midbody localization of mCherry-CHMP4b and SDs (A) or mCherry-TSG101 (B) were determined from three independent experiments and plotted. Representative images are shown; the squares show the midbody areas to be enlarged. Solid and hollow arrowheads indicate the presence and absence of mCherry-CHMP4b (A) or mCherry-TSG101 (B) at the midbody, respectively. Scale bar: 50 µm. (C) HeLa cells were transfected with indicated siRNAs for 72 h, and cell lysates were immunoblotted with indicated antibodies to visualize ALIX and actin. Fixed cells were immunostained with an anti-tubulin antibody (red), and counterstained with DAPI (blue). The average percentages of midbody-stage cells or multinucleated cells and SDs were determined from three independent experiments and plotted. Representative images are shown; solid and hollow arrows indicate mononucleated and multinucleated cells, respectively, and hollow arrowheads indicate midbodies between daughter cells. Scale bar: 50 µm. (D) HeLa cells were transfected with indicated siRNAs for 72 h, and fixed cells were immunostained with an anti-tubulin antibody (green), and counterstained with DAPI (blue). Representative images are shown in which solid and hollow arrowheads indicate midbodies with normal and abnormal morphology, respectively. The squares on the right corner show the 3x enlarged midbody area. The percentages of abnormal midbodies were determined from at least 50 midbody-stage cells. Scale bar: 15 µm.

Prepare IE from HEK293 cells ectopically expressing GFP-ALIX Incubate IE with MEE plus GST or GST-p9 Dephosphorylate the mixture with IOE followed by IP with 1A3 or 3A9 antibody

Figure S4. Supplemental data related to Figure 6. IE from HEK293 cells ectopically expressing GFP-ALIX was processed as diagrammed (left panel). Input proteins (middle panel) and immunocomplexes (right panel) were immunoblotted with indicated antibodies to visualize GFP-ALIX, GST, GST-p9 and IgG-H.

Figure S5. Supplemental data related to Figure 7. (A) HEK293 cells ectopically expressing indicated forms of GFP-ALIX were processed as described for Fig. 7A. Same volumes of aliquots were taken and immunoblotted with indicated antibodies. (B) HEK293 cells transfected with indicated siRNAs and the plasmid for ΔPxY GFP-ALIX* were processed as described for Fig. 7 C&D. (C) HEK293 cells transfected with indicated siRNAs and the plasmid for ΔPxY GFP-ALIX* were processed as described as Fig. 7 E&F.

 Table S1. Sequences of siRNAs used in this study - related to Experimental Procedures

Target	Name	Sequence	Source
ALIX	si-ALIX	5'-GAGAAGAAAUUGCAAGGUUdTdT-3'	Sigma-Genosys
Firefly GL3 luciferase	si-NC	5'-CUUACGCUGAGUACUUCGAdTdT-3'	Sigma-Genosys

Vector	Source	Reference
1. pEGFP-C3-based mammalian expression	A gift from Dr. Masatoshi Maki (Nagoya,	(Shibata et al.,
vector for GFP-ALIX	Japan)	2004)
1a. pEGFP-C3-based mammalian expression	Site-directed mutagenesis	new
vector for ALIX-siRNA-insensitive GFP-ALIX	of vector 1	
(GFP-ALIX*)		
1b. pEGFP-C3-based mammalian expression	Site-directed mutagenesis	new
vector for S718A GFP-ALIX	of vector 1	
1c. pEGFP-C3-based mammalian expression	Site-directed mutagenesis	new
vector for S721A GFP-ALIX	of vector 1	
1d. pEGFP-C3-based mammalian expression	Site-directed mutagenesis	new
vector for S718A-S721A GFP-ALIX	of vector 1	
1e. pEGFP-C3-based mammalian expression	Site-directed mutagenesis	new
vector for S712A-S729A GFP-ALIX	of vector 1	
1f. pEGFP-C3-based mammalian expression	Site-directed mutagenesis	new
vector for S718A-S721A ALIX-siRNA-	of vector 1a	
insensitive GFP-ALIX (S2A GFP-ALIX*)		
1g. pEGFP-C3-based mammalian expression	Site-directed mutagenesis	new
vector for S712A-S729A ALIX-siRNA-	of vector le	
insensitive GFP-ALIX (S2A- GFP-ALIX*)		
Th. pEGFP-C3-based mammalian expression	Site-directed mutagenesis	new
vector for S/18D-S/21D GFP-ALIX	of vector 1	
2. pCMV-based mammalian expression vector for	A gift from Dr. Masatoshi Maki (Nagoya,	(Katoh et al.,
FLAG-CHMP4b	Japan)	2003)
3. pIRES2 based mammalian expression vector	A gift from Dr. Wesley I. Sundquist	(von Schwedler et
10f FLAG-1SG101	(Salt Lake City, U1)	al., 2003)
4. pmCherry-C1-based expression	EaoPL and YhoL and insert it into the	new
vector for menerg-CHWP40	ECOKI and Anoi and insert it into the	
	digestion with EcoRI and Sall	
5 nmCherry-C1-based expression	PCR amplification of coding region of	new
vector for mCherry-TSG101	TSG101 from pIRES2-	iie w
vector for menerry-156101	FLAG_TSG101 followed by subcloning into	
	nmCherry-C1 vector (clontech)	
6 pEV53B-based mammalian expression vector	A gift from Dr. John Olsen	(Olsen 1998)
for infection defective EIAV	(Chapel Hill, NC)	(0.000, 0, 0, 0)
7. pCS2-MT based TNT expression vector for	PCR amplification of coding region of amino	new
myc-ALIX _{nPRD}	acid 706-786 of WT GFP-ALIX, followed by	
	subcloning into pCS2-MT vector (clontech)	
8. pCS2-MT based TNT expression vector for	PCR amplification of coding region of amino	new
S718A-S721A myc-ALIX _{nPRD}	acid 706-786 of S718A-S721A GFP-ALIX,	
	followed by subcloning into pCS2-MT vector	
	(clontech)	
9. pCS2-MT based TNT expression vector for	PCR amplification of coding region of amino	new
S712A-S729A myc-ALIX _{nPRD}	acid 706-786 of S712A-S729A GFP-ALIX,	
	followed by subcloning into pCS2-MT vector	
	(clontech)	
10. pCS2-MT based TNT expression vector for	PCR amplification of coding region of amino	new
S718D-S721D myc-ALIX _{nPRD}	acid 706-786 of S718D-S721D GFP-ALIX,	
	tollowed by subcloning into pCS2-MT vector	
	(clontech)	
11. pCS2-MT based TNT expression vector for	PCR amplification of coding region of	new
myc-18G101	ISGIUI from pIKES2-	
	rLAU-150101, 10110Wed by subcioning into	
	DUSZ-IVEL VECTOR (CIONIECD)	1

Table S2. Mammalian and bacterial expression vectors used in this study – related to Experimental Procedures

12 pCS2-HA based expression vector for HA-	PCR amplification of coding region of Plx1	new
Plx1 (Xenopus)	from pBluescript-Plx1(A gift from Dr.	
	William G. Dunphy (Kumagai and Dunphy,	
	1996), followed by subcloning into pCS2-HA	
	vector (clontech)	
13. pCS2-HA based expression vector for HA-	PCR amplification of coding region of K82R	new
K82R Plx1 (Xenopus)	Plx1 from pBluescript-K82R Plx1, followed	
	by subcloning into pCS2-HA vector	
	(clontech)	
14. pGEX-4T3 based bacterial expression vector	PCR amplification of coding region of amino	new
GST-ALIX _{nPRD}	acid 706-786 of WT GFP-ALIX, followed by	
	subcloning into pGEX-4T3 vector (Amersham	
	Biosciences)	
15. pGEX-4T3 based bacterial expression vector	Generated in our previous studies	(Pan et al., 2006)
for GST-ALIX _{Bro1}		
16. pGEX-4T3 based bacterial expression vector	Generated in our previous studies	(Zhou et al.,
for GST-ALIX ₁₋₇₄₆		2010)
17. pGEX-4T3 based bacterial expression vector	PCR amplification of coding region of	new
for GST-CHMP4b	CHMP4b from FLAG-CHMP4b, followed by	
	subcloning into pGEX-4T3 vector (Amersham	
	Biosciences)	
18. pGEX-4T3 based bacterial expression vector	A gift from Dr. Wesley I. Sundquist (Salt	(Fisher et al.,
for GST-p9 ^{Gag}	Lake City, UT)	2007)

Product	Primers (Forward/Reverse)	Template
1a. ALIX-siRNA-	5'-GAAGAAATTTGGGGAGGAGAATCGCGAGATTACAGCATGCAGCAG-3'	1. WT
insensitive GFP-	5'-CTGCTGCATGCTGTAATCTCGCGATCTCCTCCCCAAATTTCTTC-3'	GFP-ALIX
ALIX		
1b. S718A GFP-	5'-CATTGCCAGAGAACCTGCTGCTGCTCCTTCAATTCCTACAC-3'	1. WT GFP-
ALIX	5 - GIGIAGGAAIIGAAGGAGGAGGAGGAGGIICICIGGGAAIG-5	ALIX
	5' GCAGGTGTAGGAATTGCAGGAGCACTAGGTTC 3'	I. WI GFP-
1d \$7184-\$7214	5'-CATTGCCAGAGAACCTGCTGCTGCCACTCCTACACCTG.3'	1 WT GFP-
GFP-ALIX	5'-CAGGTGTAGGAATTGCAGGAGCAGCAGGTTCTCTGGCAATG-3'	ALIX
1e. S712A-S729A	WT to S712A:	1. WT GFP-
GFP-ALIX	5'-CTTAAAGGACTTGCAACAAGCCATTGCCAGAGAACCTAGTG-3'	ALIX
	5'-CACTAGGTTCTCTGGCAATGGCTTGTTGCAAGTCCTTTAAG -3'	
	5' CTACACCTGCGTATCAGGCCTCACCAGCAGGAGGAC 3'	
	5'-GTCCTCCTGCTGGTGAGGCCTGATACGCAGGTGTAG-3'	
1f. S718A-S721A	5'-CATTGCCAGAGAACCTGCTGCTGCTGCAATTCCTACACCTG-3'	1a. ALIX-
ALIX-siRNA-	5'-CAGGTGTAGGAATTGCAGGAGCAGCAGGTTCTCTGGCAATG-3'	siRNA-
insensitive GFP-		insensitive GFP-
ALIX		ALIX
1g. S712A-S729A	5'-GAAGAAATTTGGGGAGGAGAGATCGCGAGATTACAGCATGCAGCAG-3'	1e. S712A-
ALIX-siRNA-	5'-CTGCTGCATGCTGTAATCTCGCGATCTCCTCCCCAAATTTCTTC-3'	S729A GFP-
insensitive GFP-		ALIX
ALIA 16 \$7180 \$7210		1 WT GED
GFP-ALIX	5'-CGCAGGTGTAGGAATATCAGGAGCATCAGGTTCTCTGGCAATGC-3'	ALIX
5 mChammy	5' TAACTECACCT ATCCCCCTCTCCCACAC 2' (Vho I)	2 mIDES2
5. mCherry-	5° TAAGAATTCTCAGTAGAGGTCACTGAGACCG 3° (Zilo I)	5. pikes2- FLAG TSG101
150101		1 U/T CEP
7. pCS2-MT-	5'-TAAGAATTCATTAAAGGACTTGCAACAAAGCATTG-3' (EcoRI)	I. WT GFP-
ALIA _{nPRD}	5 - TAACTCGAGTGGCGCAGCAGTCCC-5 (Xfl01)	ALIX
8. pCS2-MT-	5'-TAAGAATTCATTAAAGGACTTGCAACAAAGCATTG-3' (EcoRI)	1d. S718A-
S/18A-S/21A	5'-TAACTCGAGTGGCGCAGCAGTCCC-3' (Xho I)	S721A GFP-
$ALIA_{nPRD}$		ALIA 1. \$7124 \$720
9. pC32-W11-	5^{-1}	$\Delta GFP_{\Delta I} IX$
ALIX, PRD		A OIT-ALIA
10. pCS2-MT-	5'-TAAGAATTCATTAAAGGACTTGCAACAAAGCATTG-3' (EcoRI)	1h. S718D-
\$718D-\$721D	5'-TAACTCGAGTGGCGCAGCAGTCCC-3' (Xho I)	S721D GFP-
myc-ALIX _{nPRD}		ALIX
11. pCS2-MT-	5'- TAAGAATTCAATGGCGGTGTCGGAGAG-3' (EcoRI)	3. pIRES2-
TSG101	5'- TAACTCGAGTCAGTAGAGGTCACTGAGACCG-3' (Xho I)	FLAG-TSG101
12. pCS2-HA-	5'-AATGGGCCCTCAAGTGGCCGGTAAGAAAC-3' (Apa I)	pBluescript-Plx1
Plx1 (Xenopus)	5'-GCCTCTAGAGCCGAGGCCTTTACGTGTGC-3' (Xba I)	
13. pCS2-HA-	5'-AATGGGCCCTCAAGTGGCCGGTAAGAAAC-3' (Apa I)	pBluescript-Plx1
Plx1 K82R	5'-GCCTCTAGAGCCGAGGCCTTTACGTGTGC-3' (Xba I)	K82R
(Xenopus)		
14. pGEX-4T3-	5'-TAAGAATTCCTTAAAGGACTTGCAACAAAGCATTG-3' (EcoRI)	1. WT GFP-
ALIX _{nPRD}	5'-TAACTCGAGTGGCGCAGCAGTCCC-3' (Xho I)	ALIX
17. pGEX-4T3-	5'- TAAGAATTCCATGTCGGTGTTCGGGAAG-3' (EcoRI)	2. FLAG-
CHMP4b	5'- TAACTCGAGTTACATGGATCCAGCCCAG-3' (Xho I)	CHMP4b

Table S3. PCR primers used for site-directed mutagenesis and making vectors – related to Experimental Procedures

Antibody	Recognition	Туре	Source	Use
1A3 anti-ALIX	ALIX (Y319)/	Mouse	Made in our previous	Immunoblotting
	Xp95(Y318)	monoclonal	studies	Immunoprecipitation
1A12 anti-	ALIX (05 700	Mouse	Made in our previous	Immunoprecipitation
ALIX	1 12011 1003-709	monoclonal	studies	
2H12 anti-	ALIX FOR market	Mouse	Made in our previous	Immunoprecipitation
ALIX	r 1217 1F6/6 pocket	monoclonal	studies	minunoprecipitation
3A9 anti-ALIX	ALIX (05.700	Mouse	Made in our previous	Immunoblotting
	112111005-709	monoclonal	studies	Immunoprecipitation
anti-actin	Actin	Mouse	Sigma-Aldrich	Immunoblotting
		monoclonal	Cat#: A5441	6
anti-tubulin	Alpha-tubulin	Rabbit	Cell Signaling	Immunostaining
	I	monoclonal	Cat#: 2125S	6
anti-CA	EIAV capsid	Mouse	A gift from Dr. Robert	Immunoblotting
	antigen (CA)	monoclonal	Mealey (Pullman, WA)	6
anti-CHMP4b	CHMP4b	Rabbit	Santa Cruz	Immunoblotting
		polyclonal	Cat#: sc-134946	
anti-EEA1	EEA1	Rabbit	Epitomics	Immunoblotting
		monoclonal	Cat#: 3704-1	6
anti-EGFR	EGFR	Rabbit	Epitomics	Immunoblotting
		monoclonal	Cat#: 1902-1	6
anti-ERK1	ERK1	Rabbit	Santa Cruz	Immunoblotting
		polyclonal	Cat#:sc-94	6
anti-ERK2	ERK2	Rabbit	Santa Cruz	Immunoblotting
		polyclonal	Cat#:sc-154	- C
anti-FLAG	FLAG epitope	Mouse	Pierce	Immunoblotting
	1 1	monoclonal	Cat#: MA1-918781	C C
anti-FLAG	FLAG epitope	Rabbit	Santa Cruz	Immunoblotting
		polyclonal	Cat#: sc-807	Immunoprecipitation
anti-GFP	GFP	Mouse	Santa Cruz	Immunoblotting
		monoclonal	Cat#: sc-9996	Immunoprecipitation
				Immunostaining
anti-GST	GST	Rabbit	Santa Cruz	Immunoblotting
		polyclonal	Cat#: sc-459	
anti-HA	HA epitope	Rabbit	Santa Cruz	Immunoblotting
		polyclonal	Cat#: sc-805	Immunoprecipitation
IgG	IgG	Mouse	Sigma-Aldrich	Immunoprecipitation
			Cat#: I5381-10MG	
IgG	IgG	Rabbit	Sigma-Aldrich	Immunoprecipitation
			Cat#: I5006-10MG	
anti-myc	myc epitope	Rabbit	Santa Cruz	Immunoblotting
		polyclonal	Cat#: sc-789	Immunoprecipitation
MPM2	Mitotic	Mouse	Lab reserve	Immunoblotting
	phosphoproteins	monoclonal		
#4381 antibody	PKD substrates	Rabbit	Cell Signaling	Immunoblotting
		polyclonal	Cat#: 4381	Immunoprecipitation
anti-pS2	p-S718-S721-ALIX	Rabbit	Made in this study	Immunoblotting
antibody		polyclonal		Immunoprecipitation
anti-p-ERK	p-ERK1/2 at Tyr	Mouse	Santa Cruz	Immunoblotting
	204	monoclonal	Cat#: sc7383	
antı-RFP	mCherry epitope	Mouse	Pierce	Immunoblotting
		monoclonal	Cat#: MA5-15257	T 11
antı-p-Tyr	phosphotyrosine	Mouse	Cell Signaling	Immunoblotting
	T00101	monoclonal	Cat#: 9416	T
anti-18G101	18G101	Rabbit	Epitomics	Immunoblotting
		monocional	Cat#: 55//-1	

Table S4. Antibodies used in this study – related to Experimental Procedures

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

In vitro phosphorylation of ALIX fragments with Xenopus extracts and GST pull-down

In vitro transcription and linked translation of proteins was performed by using TNT® Quick Coupled Transcription/Translation System (Promega) according to the manufacturers' instructions. GST and GST-tagged proteins were produced and purified using our standard procedures (Che et al., 1997). Phosphorylation reaction included one volume of substrate proteins and three volumes of IOE or MEE. The reaction was performed at 22°C for 2 h unless otherwise indicated, and terminated by adding SDS-PAGE sample buffer. The Plk1 inhibitor BI-2536 (Axon Medchem), the PKD inhibitor CID755673 (BioVision Inc.), and the pan-kinase inhibitor staurosporine (LC Laboratories) were all dissolved in Dimethyl sulfoxide (DMSO), and added to MEE at 4°C whenever indicated 15 min prior to the phosphorylation reaction to reach a final concentration of 2 μ M, 5 μ M and 5 μ M, respectively. GST tagged proteins were immobilized onto glutathione (GSH) beads (GenScript), and GST pull-down was performed at 4°C for 2 h. After GSH beads were washed five times with EB, proteins remaining on the beads were eluted with SDS-PAGE sample buffer for immunoblotting.

Immunostaining and fluorescence microscopy

Transfected HeLa cells were subcultured into chamber slides (Nunc Lab-Tek) coated with poly-D-Lysine (Cultrex) and cultured for 48 h before being fixed with 4% (w/v) of Paraformaldehyde at room temperature for 20 min. Fixed cells were permeabilized with 0.2% Triton X-100 in PBS followed by blocking with 1x blocking buffer (1% BSA, 0.25% horse serum, 0.2% Triton X-100 in PBS). Blocked cells were first stained with primary antibodies in 0.1x blocking buffer at 4°C overnight, and then with Alexa Fluor 568, Alexa Fluor 488 or Alexa Fluor 647 conjugated secondary antibodies in TBST (0.1% Triton X-100 in TBS) at room temperature for 1 h. Nuclei were stained with DAPI (Sigma). Images were acquired using MetaMorph software (7.7.5.0) on ZEISS Axioplan2 image system (Objective: plan-NEOFLUAR 20×/0.50). For obtaining the percentages of the midbody localization of mCherry-CHMP4b or mCherry-TSG101 in midbody-staged cells with knockdown of ALIX, at least 10 clearly mCherry positive cells were counted for each experiment. For obtaining the percentages of the midbody localization of mCherry-CHMP4b in midbody-staged cells ectopically expressing both GFP-ALIX* and mCherry-CHMP4b, at least 10 clearly double positive cells were counted for each experiment. For obtaining the percentages of multinucleated or midbody-staged cells induced by ALIX knockdown, at least 200 cells were counted for each experiment. For obtaining the percentages of multinucleated or midbody-staged cells ectopically expressing GFP or GFP-ALIX*, at least 100 clearly GFP-positive cells were counted for each experiment. There are four types of GFP-ALIX transfected cells under our fluorescence microscope. (i) No over-background green signal. (ii) Low over-background green signal without clear cell contour. (iii) Easily discernible over-background green signal with clear cell contour and specific localization in the cytoplasm. (iv) Very bright green cells with rounded cell shape, suggesting cell toxicity. We specifically examined the third type of cells.

Generation of rabbit polyclonal antibodies recognizing phosphorylated Ser718 and Ser721 at ALIX

To prepare antigen, a synthetic phosphopeptide consisting of the residues 711 to 724 of ALIX and phosphorylated at both Ser718 and Ser721 (CSIAREP(pS)AP(pS)IPT) was conjugated to keyhole limpet hemocyanin (KLH). To generate rabbit polyclonal antibodies, rabbits were immunized with the conjugated phosphopeptide for 42 days, and immunesera were collected. The IgG fraction of the antibodies was purified by protein G affinity chromatography. The phosphospecificity of the purified antibodies were evaluated with the enzyme-linked immune sorbent assay (ELISA).

SUPPLEMENTAL REFERENCES

Che, S., Weil, M.M., Nelman-Gonzalez, M., Ashorn, C.L., and Kuang, J. (1997). MPM-2 epitope sequence is not sufficient for recognition and phosphorylation by ME kinase-H. FEBS Letter *413*, 417-423.

Fisher, R.D., Chung, H.Y., Zhai, Q., Robinson, H., Sundquist, W.I., and Hill, C.P. (2007). Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding. Cell 128, 841-852.

Katoh, K., Shibata, H., Suzuki, H., Nara, A., Ishidoh, K., Kominami, E., Yoshimori, T., and Maki, M. (2003). The ALG-2interacting protein Alix associates with CHMP4b, a human homologue of yeast Snf7 that is involved in multivesicular body sorting. J Biol Chem *278*, 39104-39113. Epub 32003 Jul 39114.

Kumagai, A., and Dunphy, W.G. (1996). Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts. Science 273, 1377-1380.

Olsen, J.C. (1998). Gene transfer vectors derived from equine infectious anemia virus. Gene Ther 5, 1481-1487.

Pan, S., Wang, R., Zhou, X., He, G., Koomen, J., Kobayashi, R., Sun, L., Corvera, J., Gallick, G.E., and Kuang, J. (2006). Involvement of the adaptor protein Alix in actin cytoskeleton assembly. J Biol Chem 285, 34640-34650.

Shibata, H., Yamada, K., Mizuno, T., Yorikawa, C., Takahashi, H., Satoh, H., Kitaura, Y., and Maki, M. (2004). The penta-EF-hand protein ALG-2 interacts with a region containing PxY repeats in Alix/AIP1, which is required for the subcellular punctate distribution of the amino-terminal truncation form of Alix/AIP1. J Biochem (Tokyo) *135*, 117-128.

von Schwedler, U.K., Stuchell, M., Muller, B., Ward, D.M., Chung, H.Y., Morita, E., Wang, H.E., Davis, T., He, G.P., Cimbora, D.M., et al. (2003). The protein network of HIV budding. Cell 114, 701-713.

Zhou, X., Si, J., Corvera, J., Gallick, G.E., and Kuang, J. (2010). Decoding the intrinsic mechanism that prohibits ALIX interaction with ESCRT and viral proteins. Biochem J 432, 525-534.