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1 Supplementary Results

Attempting to improve AUC of predicted models

In in the current implementation we exclude all phosphosites with pro-
line at +1 when predicting the specificity for kinases that are not proline
directed. This requires prior knowledge regarding the different kinase
families, which might not always be available for different PTM types
or species. Instead of having to specify the P+1 kinases, we can use
all phosphosites as a background for motif enrichment to decrease the
importance of P+1 motifs. However, this approach results in a mod-
erate decrease in the mean AUC to 0.61 (Supplementary Figure 11)
and a smaller number of predictions (32 vs. 85). When using all phos-
phosites as a background, the importance of prolines and arginines at
certain positions is decreased and in most cases are not enriched for,
likely resulting in incorrect enrichments and ultimately models (Sup-
plementary Figure 12).

We also tested if improving the phosphorylation site quality could
improve results. We filtered the phosphorylation data using two dif-
ferent criteria. First, we selected phosphosites that were annotated to
at least two pubmed articles. Second, since MS methods are biased
towards highly abundant proteins, we removed phosphosites that oc-
curred in the top 10% abundant proteins as defined in PaxDB1. For
each criterion, we generated models and measured the performance.
Overall, filtering did not appear to improve the performance of the mod-
els (Supplementary Figure 11).

2



2 Supplementary Figures

Figure 1

Proportion of kinase-substrate pairs in STRING: 5.5% (p-value<0.001)
Proportion of kinase-substrate pairs in BioGRID2: 7.61% (p-value<0.001)
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Enrichment of kinase–substrate pairs in protein interaction net-
works. Histogram of In the STRING interaction network for the hu-
man kinases 5.5% of the interactions correspond to known kinase–
substrate interactions. Similarly, Biogrid contains 7.61% known kinase-
substrate interactions. The histograms show the proportion of 1,000
random kinase–substrate pairs in STRING and BioGRID.
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Figure 2
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Proline bias across all phosphosites. Bar plots showing (a) Informa-
tion content for each position flanking the central residue for all known
phosphosites. The highest information content position is shown in
magenta. (b) Amino acid frequencies for each position of all phospho-
sites. Proline is highlighted in red.
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Figure 3
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Predicted model including
P+1 sequences 

Predicted model excluding
P+1 sequences 

a

b

Effect of removing P+1 phosphosites for kinases. (a-b) Two ex-
amples of non-proline directed kinases, ATR and RPS6KA5. Each
example shows the predicted specificity before (left) and after (right)
removal of P+1 phosphosites. Consistent enrichment of proline is ob-
served for these cases if P+1 phosphosites are not removed, masking
the true specificity of the kinase.
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Figure 4
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Proline-directed CMGC kinases. Bar plot showing CMGC vs. non-
CMGC kinases with at least 20 substrates and the proportions of each
class, which are proline directed. Kinases were considered proline
directed if a predominance of Proline was observed at position +1.
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Figure 5
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Figure 6

Top 1 motifs (15 sequences)
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Masking predicted specificity by over-selecting motifs. Specificity
predictions for CSNK2A1 (CK2) resulting from different top k significant
motifs. Over selecting motifs can result in less specific predictions and
sometimes the inclusion of other contaminant motifs.
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Figure 7
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Distribution of AUCs using different STRING evidences (a) Distri-
bution of AUCs for predicted models of all kinases with ≥ 20 known
substrates by either excluding a particular string evidence, or using
only that evidence to generate the prediction. (b) Bar plot showing the
proportion of kinases with no prediction resulting from lack of interac-
tions when restricting evidences.
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Figure 8
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Performance of predicted vs. random models. Bar plots show-
ing AUCs of predicted models of 85 kinases with ≥20 known targets
vs. that of random models (.p<0.01, *p<0.05, **p<0.01, *** p<0.001,
z-test). Error bars represent the median absolute deviation of 1000
random models.
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Figure 9
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Impact of the number of domains on predictions. Bar plot show-
ing the distribution of AUCs for kinases, depending on the number of
Pfam3 domains they contain. Kinases with more than one domain,
overall, have significantly lower AUCs.
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Figure 10
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Feature correlations. AUCs of predicted models correlated with (a)
number of phosphosite sequences on functional partners, (b) num-
ber of phosphosite sequences matching the top 5 enriched motifs, (c)
number of functional partners, (d) sum of information content across
positions of models (e) maximum information content amongst differ-
ent positions, (f) total number of enriched motifs and (g) number of
annotated Pfam domains. (h) A linear regression model built using a
combination of features (a,d,e,f) is used to predict the AUC of predicted
specificity models, which are correlated against the true AUC. Line of
best fit is shown in red.
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Figure 11
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Variations of motif enrichment background sets. Bar plot show-
ing the distribution of AUCs by (1) using unphosphorylated STY sites
as background for motif enrichment, while filtering P+1 phosphosites
(our method) versus (2) Filtering phosphosites having less than two
associated pubmed IDs (3) Filtering phosphosites occurring in highly
abundant proteins, obtained from PaxDB1 (4) Refining function part-
ner phosphosites using the method described in Reimand et al.4. (5)
Using all phosphorylation sites as a background while retaining P+1
phosphosites in non-proline directed kinases.
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Figure 12
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as enrichment background 

Predicted model using
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as enrichment background
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Using phosphorylated sequences as background for motif en-
richment, while retaining P+1 sequences for non proline-directed
kinases. (a-d) Predicted models for non proline-directed kinases, us-
ing top 5 significant motifs. The left predicted model is with unphospho-
rylated sequences as background for motif enrichment, while filtering
out P+1 sequences. The right predicted model is using all phospho-
rylation sites as background for motif enrichment, while retaining P+1
sequences.

14



Figure 13

YWHAQ  246 partners  137/3841 sites

RPR..[ST]..... (17)

..RS.[ST].P... (15)

.....[ST]PK..K (12)

..RR.[ST]..... (62)

R.R..[ST].S... (22)

YWHAG  158 partners  209/2491 sites

..RS.[ST].P... (23)

.....[ST]PP... (74)

..RR.[ST]..... (43)

H....[ST]P.... (20)

R.R..[ST]..... (45)

YWHAB  176 partners  78/2961 sites

R.R..[ST]...G. (12)

R.R.N[ST]..... (10)

..RS.[ST].P... (21)

..R..[ST].S..N (10)

R.RS.[ST]..... (21)

YWHAH  144 partners  159/2372 sites

..RS.[ST].P... (18)

..R..[ST].S..N (10)

RPR..[ST]..... (16)

..RR.[ST]..... (47)

..R..[ST].S... (53)

YWHAE  220 partners  151/3549 sites

..RS.[ST].P... (22)

..G..[ST]PP... (12)

R.R..[ST]..S.. (14)

..RR.[ST]..... (76)

...P.[ST]PP... (19)

SFN  65 partners  349/1039 sites

..RS.[ST].P... (13)

..RR.[ST]..... (22)

R.R..[ST]..... (26)

.....[ST]P.... (191)

..R..[ST]..... (97)

YWHAZ  256 partners  72/4305 sites

R.R..[ST]...G. (11)

..RS.[ST].P... (24)

..R..[ST].S..N (12)

..RRN[ST]..... (10)

.KRS.[ST]..... (10)

a b

c d

e f

g h p300 (bromo)  163 partners  106/594 sites

..G..K...K. (16)

.....K..K.. (90)

Predictions of specificities for other PTM types. Each panel shows
the logo representing the predicted specificity (left) and the top five
extracted motifs and the number of sites matching them (right). (a-g)
Shows predictions for 14-3-3 proteins and (h) shows the prediction for
bromodomain-containing protein p300.
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Figure 14
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Overlap between 14-3-3 predictions. Heatmap showing the Jaccard
overlap between sequences used in constructing the different 14-3-3
models. In most cases, there is little overlap, despite the fact that same
motifs are recovered.
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