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Supplement 1: Materials and Methods
1.1 General Eligibility Criteria for Subjects in ADNI

Enrolled subjects were 55 to 90 years old with a minimum 6th-grade level of education;
had a study partner able to provide an independent evaluation of functioning; could speak
either English or Spanish; had adequate visual and auditory acuity to allow
neuropsychological testing; were willing and able to undergo all test procedures, including
neuroimaging; and agreed to longitudinal follow-up. All subjects had no significant neurologic
disease, major depression, history of schizophrenia or bipolar disorder, recent history of

alcohol or substance abuse, and no pacemakers or other objects deemed unsafe for MRI.

1.2  Clinical Data (additional details)
Clinical Risk Factors

Age (years)
Sex (Male/Female)

Education (years)

> wDh -

APOE genotype:
a. Number of €4 alleles
b. €4 allele carrier status
5. Family history of dementia:
a. Parental
b. Maternal
c. Paternal
6. Number of cerebrovascular disease risk factors (0-6):
[1] Diabetes mellitus, [2] cardiovascular disease (coronary/carotid artery disease,
valvular disease, congestive heart failure), [3] hypertension, [4] smoking (>5 pack-
years), [5] hyperlipidemia, [6] stroke/TIA

7. Body mass index
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8. History of:
a. Depression
Anxiety
Other psychiatric disorders
Alcohol abuse

Head trauma (with loss of consciousness)

-~ ® oo T

Sleep apnea

Clinical Assessments

The following assessments were administered to the subjects in ADNI. The Mini-
Mental State Examination (MMSE) (Folstein et al., 1975) is widely used as a screening test
for dementia and assesses cognitive function in multiple domains, including orientation,
language, attention, calculation, constructional praxis, and memory. The Clinical Dementia
Rating (CDR) scale (Morris, 1993) is administered as a semi-structured interview with both
the patient and an informant that assesses the patient's functional and cognitive status in six
domains: memory, orientation, judgment and problem-solving, community affairs, home and
hobbies, and personal care. The Functional Activities Questionnaire (FAQ) (Pfeffer et al.,
1982) assesses the level of independence in performing activities of daily living (e.g. record
keeping, managing finances, shopping, meal preparation, remembering dates,
transportation). The Geriatric Depression Scale (GDS) (Sheikh and Yesavage, 1986) is a self-
report assessment of depressive symptoms and designed to be used as a screening test for
depression in older adults. The Neuropsychiatric Inventory Questionnaire (NPI-Q) (Kaufer et
al., 2000) is an informant-based assessment of recent psychiatric and behavioral symptoms
(e.g. hallucinations, agitation, depression, anxiety, apathy, disinhibition, irritability). The
Modified Hachinski Ischemic Scale (HIS) (Rosen et al., 1980) assesses the contribution of

cerebrovascular disease to cognitive impairment based on medical history and neurological
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symptoms and signs. The American National Adult Reading Test (ANART) (Grober et al.,
1991) provides a measure of premorbid intelligence by assessing pronunciation of 50
irregular words.

In addition, a battery of neuropsychological tests was administered to further evaluate
function in specific cognitive domains. The WMS-III Logical Memory (LM) is a test of episodic
memory function that assesses immediate and delayed story recall (Johnson et al., 2003).
The Alzheimer's Disease Assessment Scale — Cognitive sub-scale (ADAS-Cog) (Mohs et al.,
1997) assesses multiple aspects of memory and language function as well as attention,
orientation, and praxis. The Rey Auditory Verbal Learning Test (RAVLT) (Vakil and Blachstein,
1993) involves learning lists of words and assesses verbal memory. The verbal (category)
fluency test (Acevedo et al., 2000) and Boston Naming Test (BNT) (Zec et al., 2007) assess
semantic memory and language function. The digit span test (Hester et al., 2004) assesses
verbal working memory. The Trail Making Test (TMT) (Tombaugh, 2004) evaluates processing
speed (part A) and executive function (part B). The Digit-Symbol Coding Test (DST) (Joy et
al., 2004) assesses processing speed, visual working memory, and visual-motor coordination.
The Clock-Drawing Test (CDT) (Shulman, 2000) assesses constructional praxis with elements

of visuospatial and executive function.

1.3 MRI Data Acquisition and Processing

MRI Acquisition Parameters: T1-weighted sagittal 3-D MP-RAGE sequence with 1.25 x
1.25 mm? in-plane resolution and 1.2 mm slice thickness, TR = 2400 ms, Tl = 1000 ms, TE =
3 ms, flip angle = 8°, 240 x 240 mm? FOV, 192 x 192 in-plain matrix size. Raw MRI data
underwent quality control and were pre-processed by the ADNI MRI Core to correct for image

geometry distortion due to gradient non-linearity and image intensity non-uniformity (see
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www.adni-info.org for details). In this study, we used these pre-processed, corrected MRI
datasets.

FreeSurfer Processing Steps: removal of non-brain tissue (skull stripping); Talairach
transformation of the brain volume into standard anatomical space; intensity normalization;
segmentation of cerebral white matter (WM), subcortical gray matter (GM), and ventricles;
delineation and 3-D reconstruction of GM/WM and GM/CSF (cerebrospinal fluid) boundaries;
and automated topology correction. The cortical surface model was registered to a spherical
atlas and used for segmentation of the cerebral cortex into regions based on gyral-sulcal
anatomy (i.e. cortical folding pattern). The final segmentation and labeling of brain structures

was based on a probabilistic atlas along with intensity and curvature information.

1.4 Data Transformation

First, volumetric and surface area MRI measures were normalized by the estimated
total intracranial volume (Buckner et al., 2004) to correct for individual differences in head
size. Second, each of the 787 features was scaled to have zero mean and unit variance
across subjects. Third, each continuous and ordinal feature was discretized into three states
(low, intermediate, high) using the mean and standard deviation to define interval boundaries,
as described in (Ding and Peng, 2005). Discretized features were used only when conducting
information-theoretic feature selection (described below) while non-discretized features were

used during model training.

1.5 Feature Selection (additional details)
Background: Feature selection is an important component of the model development

process, particularly in the case of high-dimensional pattern classification where the number
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of features is large and exceeds the number of samples available for classification (787
features and 259 subjects in this study). Many of these features may be irrelevant, redundant,
or noisy. Feature selection techniques include filter- and wrapper-based methods. Filter
methods tend to be fast and identify informative features based on inherent statistical
properties of the data, independent of any classifier. In contrast, wrapper methods evaluate
the merit of various feature subsets based on the performance of a classifier and may select
features for classification more effectively, although at a significant cost in terms of speed and
greater potential for overfitting.

Joint Mutual Information (JMI): JMI is a multivariate information-theoretic filter method
for feature selection and has been shown to perform well in terms of both classification
accuracy and stability on a wide range of real-world datasets (Brown et al., 2012). Features

are selected based on their JMI score (J), defined as:

(1)
J(X,)=I(X, ;Y)—% DX, X )-1(X, X|Y)

where X, is the feature being considered for selection, X ; is each of the previously
selected features in feature subset § ,and Y is the outcome/class variable of interest
(future dementia status, in this study). The JMI score for a given feature X, is defined as a
linear combination of three mutual information terms 7 , each of which describes the amount
of information shared (or the dependence) between two random variables; these terms

correspond to relevance I(Xk;Y) , redundancy ](Xk,'Xj) , and class-conditional

redundancy I(X,;X |Y) (Brown etal., 2012).
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1.6  Pattern Classification Approach (additional details)
Kernels: Different kernel functions can be used to provide varying definitions of

similarity. The similarity between a pair of examples « and b5 , described by their feature

vectors x, and x, ,can be defined according to each kernel function K as:

K(x,,x,)=x,x, (linear) (2)
K(x,, x,)=(x,x,+c)* (polynomial) (3)
K(x, x,)=exp(=yllx,~x|[) (Gaussian) (4)

where c¢ is aconstant, d isthe degree of the polynomial, and y is the kernel width. While
an advantage of the linear kernel is that there are no kernel parameters to set, the linear
kernel is unable to capture more complex patterns in the data, as can be done by using non-
linear kernels. In this study, we build models with both linear and nonlinear (polynomial and
Gaussian) kernels.

Multiple Kernel Learning (MKL): For illustration, consider a dataset with N examples

and S sources or representations of the data, with each example described by the feature
vector x; and discrete class (outcome) label Y, €(l,..,C| where n=1,...,N ,
s=1,..,§ ,and C isthe number of classes (outcomes). The pMKL classifier integrates

this information by learning an optimal linear combination of the multiple kernels (Damoulas

and Girolami, 2008), such thatthe N XN composite kernel is defined as:
S
K, 5 =2 P, (5)

In Eq. (5), B, isthe kernel weight describing the relative contribution of data source
(representation) s and 9, is the kernel parameter that controls the amount of data

smoothing (e.g. degree d of the polynomial kernel or width y of the Gaussian kernel).
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1.7  Multiple-kernel Multi-source Models

In models 6-8, we incorporated different nonlinear kernels in order to capture
information regarding more complex interactions among features and to integrate potentially
complementary representations of the feature data. These models were constructed by

considering all features and data sources simultaneously and included: i) a model with five
Gaussian kernels (y=1072, 107, 10°, 10", 10%) (model 6; 'MKL-Gaussian'); ii) a three-kernel

model with a linear, polynomial (d=2 and c=1), and Gaussian (y=1/D) kernels, where D is the
number of features (model 7; 'MKL-LPG'); and iii) a model with five polynomial kernels (d=1,
2, 3,4, 5and c=1) (model 8; 'MKL-Poly'). In model 9 (MKL-Linear), a separate linear kernel
was used to encode the most informative features from each of the four data sources, as

determined in single-source models 1-4.

1.8 Concordance Correlation Coefficient

The concordance correlation coefficient (CCC) (Lin, 1989) was calculated as a
measure of model calibration as follows. The probability interval (0-100%) was divided into 10
equal sub-intervals. Then, the predicted probability of MCI-to-dementia progression
(generated by the pMKL classifier and averaged across subjects) and actual probability of
progression (fraction of subjects belonging to the P-MCI group) were computed for each of
these 10 sub-intervals. The CCC was calculated by comparing these 10 pairs of predicted-
actual probability values. The reported CCC value is an average across cross-validation runs.
The CCC can range from +1 (perfect agreement) to -1 (perfect disagreement), with values of
CCC near zero indicating weak or no relationship between predicted and actual probabilities.

By using the 10 probability sub-intervals (minimum recommended in Lin, 1989) we obtained a
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robust estimate for the CCC while keeping the sub-intervals sufficiently large to maximize the

number of subjects within each sub-interval.

1.9 Cross-validation Procedure (additional details)

Background: Cross-validation (CV) (Kohavi, 1995) refers to various data partitioning
techniques commonly used in statistics and machine learning fields when developing
predictive models and assessing their performance. The key goal of CV is to obtain an
unbiased estimate of a model's predictive performance in circumstances of limited data
availability. In essence, CV allows one to estimate how well a model can be expected to make
predictions in real-world settings on new data.

Nested stratified 10-fold CV: In 10-fold stratified CV (Kohavi, 1995), the dataset is
randomly partitioned into 10 mutually exclusive parts (folds) of equal size, preserving the
proportion of samples in each class as found in the full dataset. Nine out of 10 parts are used
to train the classifier, which is then evaluated on the remaining one part. This is repeated until
each fold of the dataset has been used once for evaluation, thus resulting in 10 performance
estimates per one run of 10-fold CV. During each fold of the outer CV loop, the full dataset
(n=259) was split into a 'model development set' (90%) and a 'test set' (10%), which was held
out for final model evaluation. Feature selection, model (parameter) selection, and final model
construction were repeated independently for each fold of the outer CV loop and based only
on the 'model development set'. The inner CV loop was designed to determine the optimal
feature subset size for use in the final model. During each fold of the inner CV loop, data from
the 'model development set' were split into a 'training set' (90%) and 'validation set' (10%).
Then, JMI-based feature selection was performed based only on the 'training set' to identify

subsets with the top D most informative features for discriminating between N-MCI and P-
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MCI, where De(1,3,5,7,10,15,20,30,40,50} . A classifier was then constructed for each
of the ten feature subsets using the 'training set' and evaluated on the 'validation set'. The
subset size resulting in the highest 10-fold CV accuracy on the 'validation set' was then
selected as the optimal feature subset size, Doprivar. The final model classifier was
constructed using the top Dorriva. most informative features (selected via the JMI method)

based on the 'model development set' and evaluated on the 'test set'.
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