

Supplementary Figure 1 | Morphology and crystal structure of Co_3O_4/CNT . (a) SEM image of Co_3O_4/CNT ; Scale bar, 300 nm. (b) TEM image of Co_3O_4/CNT ; Scale bar, 40 nm. (c) XRD patterns of Co_3O_4/CNT .

Supplementary Figure 2 | Morphology and crystal structure of CoS_2/CNT . (a) SEM image CoS_2/CNT ; Scale bar, 300nm. (b) TEM image CoS_2/CNT ; Scale bar, 40 nm. (c) High-resolution TEM image CoS_2/CNT ; Scale bar, 20 nm. (d) XRD patterns of CoS_2/CNT .

Supplementary Figure 3 | STEM-EDX elemental mapping of the CoS₂/CNT hybrid. STEM-HAADF image and corresponding EDX mapping of S (orange), Co (green), and C (red) element in the CoS₂/CNT hybrid. Scale bars, 10 nm.

Supplementary Figure 4 | SEM-EDS characterization of the CoS₂/CNT and CoS|P/CNT hybrids. (a, b) SEM image and corresponding EDS spectrum of CoS₂/CNT. (c, d) SEM image and corresponding EDS spectrum of CoS|P/CNT.

Supplementary Figure 5 | Long time catalytic stability of the CoS|P/CNT hybrid. Constant overpotential was employed to drive continuous hydrogen evolution reaction. After 100 hours of hydrogen production, the catalyst still maintained 84% of its initial catalytic current density (from 12.3 mA cm⁻² to 10.4 mA cm⁻²). The fluctuation of current density in the catalytic process may be caused by bubble formation and collapse.

Supplementary Figure 6 | Faradaic efficiency for HER catalyzed by CoS|P/CNT. The actual amount of H_2 detected by GC-MS was compared with the current density (20 mA cm⁻²) to derive the Faradaic efficiency.

Supplementary Figure 7 | Comparison of CoS_2/CNT hybrids prepared using one-step and two-step methods. (a) TEM image of the CoS_2/CNT hybrid prepared with the two-step method. Scale bar, 40 nm. (b) TEM image of another CoS_2/CNT hybrid prepared using a one-step hydrothermal reaction; Scale bar, 40 nm. (c) The polarization curves of the CoS_2/CNT hybrids prepared with one-step and two-step methods. Catalyst mass loading was 0.8 mg cm⁻². (d) Corresponding Tafel slopes of the CoS_2/CNT hybrids derived from (c).

Supplementary Figure 8 | Catalytic activity and durability of CoS_2/CNT and $CoS_{2-x}P_x/CNT$ hybrids with different P/S ratios and different catalyst loadings. (a) Polarization curves of $CoS_{2-x}P_x/CNT$ hybrids prepared with different P dosages where 30, 60, 100 and 300 mg of $NaH_2PO_2 \cdot H_2O$ salt were used for 5 mg of CoS_2/CNT ; The CoS_2/CNT was used as a comparison. The catalyst mass loading was 0.8 mg cm⁻². (b) The durability (j ~ t curves) of $CoS_{2-x}P_x/CNT$ hybrids with different P/S ratios. The catalyst mass loading was 0.8 mg cm⁻². The curves were recorded without iR compensation. (c) Polarization curves of CoS|P/CNT ($CoS_{2-x}P_x/CNT$ with 100 mg P precursor) electrodes with different catalyst mass loadings.

Supplementary Figure 9 | Catalytic activity and durability of the CoS₂/CNT hybrid annealed in Ar at 400 °C. (a) Polarization curve of CoS₂/CNT after annealing in Ar at 400 °C for 1 h, showing lower HER activity compared to the as-made CoS₂/CNT hybrid; the catalyst mass loading was 0.8 mg cm⁻². (b) Durability of the annealed CoS₂/CNT hybrid for HER in 0.5 M H₂SO₄ solution, showing that the stability of the annealed CoS₂/CNT is inferior to CoS|P/CNT; 0.4 mg of catalyst was loaded on a carbon fiber paper with 0.5 cm² of active area. The test was performed without iR compensation. (c) The concentration of Co dissolved in electrolyte for the annealed CoS₂/CNT hybrid after 20 h of HER electrolysis corresponding to the j ~ t curve in (b).

Supplementary Figure 10 | XRD patterns of the CoS_2/CNT and $CoS_{2-x}P_x/CNT$ hybrids with different P/S ratios. In the study, the P/S ratio of the $CoS_{2-x}P_x/CNT$ can be readily tuned between 0 and 1 by varying the dosages of $NaH_2PO_2 \cdot H_2O$ used. The diffraction patterns remain almost unchanged from the original CoS_2/CNT within the P/S range studied. The diffraction peaks marked with asterisk symbols in the XRD patterns of CoS_2/CNT and 30 mg P can be assigned to $CoSO_4 \cdot 4H_2O$ (PDF#16-0488) which was formed from partially oxidation of pyrite CoS_2 in ambient condition. However, for the samples with higher P doping extents, no sulfate phase was detected. This confirms the role of P doping on the chemical stability of CoS|P.

Supplementary Figure 11 | Catalytic activity and durability (derived from Supplementary Figure 8) of CoS₂/CNT and CoS_{2-x}P_x/CNT hybrids with different P/S ratios. (a) Potentials needed for the CoS₂/CNT and CoS_{2-x}P_x/CNT hybrids with different P doping levels to drive an HER current density of 10 mA cm⁻², showing that the catalytic activity is not affected by P substitution. (b) The correlation between catalytic durability and P content of the CoS_{2-x}P_x/CNT hybrids. After driving HER at ~10 mA cm⁻² for 3600 seconds, the retention of catalytic current was compared among the catalysts with different P/S ratios. The P content in the CoS_{2-x}P_x/CNT hybrids increased with increasing P precursor dosage used in the synthesis until 50% of S was substituted with P (x=1.0 for CoS_{2-x}P_x). Further increase of the P dosage could not increase the P/S ratio of the CoS_{2-x}P_x/CNT. The catalytic stability of the CoS_{2-x}P_x/CNT was drastically enhanced by P doping.

Supplementary Figure 12 | Spin-resolved projected density of states (PDOS) for $CoS_{2-x}P_x$ obtained from PBE+U calculations. Please note for x = 0 and 0.5, the ground states are magnetic, while for x = 1.0, 1.5 and 2 the ground states are non-magnetic. In the figure, tot (up), tot (dn), Co-d (up) and Co-d (dn) stand for total spin-up density of states, total spin-down density of states, Co 3d spin-up density of states and Co 3d spin-down density of states, respectively.

Supplementary Figure 13 | Calibration of the reference electrode. (a) Cyclic voltammetry (CV) curve of hydrogen oxidation and evolution in 0.5 M H₂SO₄; **(b)** Open circuit potential of the electrochemical cell. The saturated calomel electrode (SCE) was calibrated with respect to the reversible hydrogen electrode (RHE). The 0.5 M H₂SO₄ electrolyte was firstly saturated with ultrahigh purity hydrogen gas. A Pt net was used as the working electrode, a Pt-Rh net as the counter electrode and the SCE electrode as the reference electrode. CV was performed at a scan rate of 5 mV s⁻¹, and the average of the two potentials at which the current crossed zero was taken as the thermodynamic potential based on SCE for the H⁺/H₂ reactions. The open circuit potential was also measured for this three electrode configuration to further confirm the electrode potential of SCE in 0.5 M H₂SO₄ electrolyte.

Supplementary Table 1 | HER activity comparison of the CoS | P/CNT hybrid with the most active non-noble metal based catalyst materials reported in the literature

Catalyst	η@10mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	J ₀ (mA cm ⁻²)	Loading (mg cm ⁻²)	Reference
	48	55	1.14	1.6	
CoS P/CNT	63	48	0.83	0.8	This work
	67	49	0.64	0.4	
CoS₂ film	232	44.6	5.40E-05	N/A	
CoSe₂ film	230	42.5	5.00E-05	N/A	
Co _{0.32} Ni _{0.68} S ₂ film	276	66.3	2.50E-04	N/A	1
Fe _{0.43} Co _{0.57} S ₂ film	192	55.9	1.60E-03	N/A	
Co _{0.56} Ni _{0.44} Se ₂ film	252	49.7	7.10E-05	N/A	
CoSe ₂ NPs	N/A	40	3.70E-02	0.037	
CoS₂/rGO/CNTs	143	51	6.26E-02	1.15	
CoS ₂	327	148	1.01E-02	0.280	2
CoS ₂ /rGO	278	82	7.02E-03	0.280	
CoS₂ film	N/A	48.8	1.91E-05	N/A	
$Fe_{0.07}Ni_{0.93}S_2$	N/A	58.7	4.69E-05	N/A	3
$Fe_{0.48}Co_{0.52}S_2$	196	47.5	9.59E-04	N/A	
$Co_{0.59}Ni_{0.41}S_2$	N/A	50.4	4.76E-05	N/A	
$Fe_{0.9}Co_{0.1}S_2/CNT$	160	46	N/A	0.4	4
CoS₂ nanopyramids on Ti foil	193	72	N/A	N/A	5
CoS ₂ nanowires	145	51.6	1.51E-02	1.7±0.3	6
Co ₂ P hollow NPs	95	45	N/A	1.0	7
CoP hollow NPs	75	50	N/A		,
CoP nanowire arrays on carbon cloth	67	51	0.288	0.92	8
CoP@CNT	117	54	0.13	N/A	9
FeP NPs	50	37	0.43	1.0	10
CoS ₂ /P nanosheets	67	50	0.47	2.5	11
CoPS NPIs	48	56	0.984	N/A	
CoPS film	128	57	0.056	N/A	12
CoPS NWs	61	75	0.554	N/A	

1T MoS ₂	210	~40	NI / A	NI / A	13
2H MoS ₂	368	75-85	N/A	N/A	-
Mo phosphosulfide	86	50	0.2	1.0	14
Li intercalated MoS ₂	113	43~47	0.13~0.25	0.12	15
MoS ₂ /CoSe ₂	68	36	0.073	0.28	16
MoP NPs	125	54	0.086	0.36	17

Supplementary Methods

Materials

NaH₂PO₂·H₂O was purchased from Alfa Aesar. H₂SO₄, KMnO₄, absolute alcohol, NaNO₃, NaOH, and H₂O₂ (30% solution) were obtained from VWR Corporation. CNTs (FloTubeTM 9000) were received from CNano Technology (Beijing) Ltd. Thioacetamide and cobalt acetate was purchased from Acros Organics. Nafion (5 wt%) was bought from Sigma-Aldrich. All the reagents were used as received. The water used throughout all experiments was purified through a Millipore system.

Preparation of mildly oxidized CNTs

Mildly oxidized CNTs were prepared through a modified Hummers method¹⁸. 1 g of multi-wall CNTs were first purified by calcination in air at 500 °C and refluxing with 40 mL of diluted hydrochloric acid (10%) to remove amorphous carbon and residual catalyst particles. The purified CNTs were washed with DI water and dried in oven at 80 °C overnight. Then, the purified CNTs were moved into a 250 mL flask and 23 mL of concentrated sulfuric acid was added. The mixture was stirred at room temperature for 12 h. After that, the flask was heated to 40 °C in an oil bath, followed by slow addition of 100 mg of NaNO₃. After 5 min, 4 g of KMnO₄ was slowly added into the suspension, keeping the reaction temperature no higher than 45 °C. The suspension was stirred for 30 min and followed by addition of 3 mL of DI water. 5 min later, another 3 mL of DI water was added. After another 5 min, 40 mL of DI water was added. 15 min later, the flask was removed from the oil bath and 140 mL of water and 30 mL of 30% H₂O₂ was added to stop the reaction. The suspension was stirred at room temperature acid solution for 3 times, followed by repeated wash with DI water until pH value reached higher than 5. The final precipitate was then collected and freeze-dried.

Materials characterizations

XRD measurements were performed using a Riguku Smartlab X-ray diffractometer with Cu K α radiation. SEM images were obtained on a Hitachi SU70 field emission SEM. Low-magnification TEM measurements were performed on a JEM 1400 (JEOL USA) with an accelerating voltage at 80 kV. High-resolution TEM imaging and STEM-EDS mapping were done with an FEI TECNAI Osiris at an accelerating voltage of 200 kV. XPS studies were performed using a Kratos Axis Ultra X-ray photoelectron spectrometer with Al K α radiation (hv = 1486.71 eV). Raman spectra were obtained using a confocal micro-Raman spectroscopy (LabRam HR Evolution, Horiba) with a 532 nm excitation laser.

Colorimetric comparison

2.5 mg of catalyst material was soaked into 10 mL of 0.5 M H_2SO_4 solution for 2 h. After that, the mixture was centrifuged and the supernatant was collected. 20 μ L of supernatant, 5 mL of sodium acetate solution (250 g L⁻¹), and 3 mL of Nitrite R salt solution (10 g L⁻¹) were added

into a 25 mL vial. The dissolved Co^{2+} can form a red-colored complex with the nitrite R salt in acetate buffer solution.

Supplementary References

- 1. Kong DS, Cha JJ, Wang HT, Lee HR, Cui Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. *Energy Environ Sci* **6**, 3553-3558 (2013).
- 2. Peng S, et al. Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew. Chem. Int. Ed. Engl. 53, 12594-12599 (2014).
- Faber MS, Lukowski MA, Ding Q, Kaiser NS, Jin S. Earth-Abundant Metal Pyrites (FeS, CoS, NiS, and Their Alloys) for Highly Efficient Hydrogen Evolution and Polysulfide Reduction Electrocatalysis. J Phys Chem C Nanomater Interfaces 118, 21347-21356 (2014).
- 4. Wang DY, *et al.* Highly active and stable hybrid catalyst of cobalt-doped FeS₂ nanosheets-carbon nanotubes for hydrogen evolution reaction. *J. Am. Chem. Soc.* **137**, 1587-1592 (2015).
- 5. Zhang H, *et al.* Highly Crystallized Cubic Cattierite CoS₂ for Electrochemically Hydrogen Evolution over Wide pH Range from 0 to 14. *Electrochim. Acta* **148**, 170-174 (2014).
- 6. Faber MS, Dziedzic R, Lukowski MA, Kaiser NS, Ding Q, Jin S. High-performance electrocatalysis using metallic cobalt pyrite CoS₂ micro- and nanostructures. *J. Am. Chem. Soc.* **136**, 10053-10061 (2014).
- Callejas JF, Read CG, Popczun EJ, McEnaney JM, Schaak RE. Nanostructured Co₂P Electrocatalyst for the Hydrogen Evolution Reaction and Direct Comparison with Morphologically Equivalent CoP. *Chem. Mater.* 27, 3769-3774 (2015).
- Tian J, Liu Q, Asiri AM, Sun X. Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. J. Am. Chem. Soc. 136, 7587-7590 (2014).
- 9. Liu Q, *et al.* Carbon Nanotubes Decorated with CoP Nanocrystals: A Highly Active Non-Noble-Metal Nanohybrid Electrocatalyst for Hydrogen Evolution. *Angew. Chem. Int. Ed.* **53**, 6710-6714 (2014).
- 10. Callejas JF, *et al.* Electrocatalytic and Photocatalytic Hydrogen Production from Acidic and NeutralpH Aqueous Solutions Using Iron Phosphide Nanoparticles. *ACS Nano* **8**, 11101-11107 (2014).
- Ouyang C, et al. Hierarchically Porous Ni₃S₂ Nanorod Array Foam as Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction and Oxygen Evolution Reaction. *Electrochim. Acta* **174**, 297-301 (2015).
- 12. Caban-Acevedo M, et al. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. *Nat. Mater.* **14**, 1245-1251 (2015).
- Voiry D, et al. Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction. Nano Lett.
 13, 6222-6227 (2013).
- 14. Kibsgaard J, Jaramillo TF. Molybdenum Phosphosulfide: An Active, Acid-Stable, Earth-Abundant Catalyst for the Hydrogen Evolution Reaction. *Angew. Chem. Int. Ed.* **53**, 14433-14437 (2014).
- 15. Wang H, et al. Electrochemical tuning of vertically aligned MoS₂ nanofilms and its application in improving hydrogen evolution reaction. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 19701-19706 (2013).
- 16. Gao MR, et al. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. *Nat Commun* **6**, 5982 (2015).
- 17. Xing Z, Liu Q, Asiri AM, Sun X. Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water. *Adv. Mater.* **26**, 5702-5707 (2014).
- 18. Liang Y, et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J Am Chem Soc **134**, 15849-15857 (2012).