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1 The relationship between background input
and number of waves

To translate P̂s(λE, gE, L0), which models wave propagation in the FM, into
Ps(h, gE, L0), which models wave propagation in the RM, we need λE as a
function of h, the number of synfire waves. For the model of Trengove et al.
(2013) this function λE(h) is determined by

λE = CE(νS(λE) + νW(h, λE)) , (1)

where νS(λE) is the rate of stochastic spiking per neuron in response to back-
ground input – its value is determined numerically by simulations of single
neurons receiving background input of the same form as used in the simulations
of individual chains. νW(h, λE) is the rate per neuron of spikes belonging to
waves, in Trengove et al. (2013) given by

νW(h, λE) = hnEpf(λE)/(NET (λE)) , (2)

where nEpf(λE) is the expected size of the pulse packet and T (λE) is the mean
pool-to-pool propagation time. Equations (1) and (2) determine λE as a func-
tion of h. However, in the present model, due to the variable chain strengths,
equation (2) needs to be modified. The contribution to νW made by an individ-
ual wave, νW,1, depends on the strength gE of the chain on which it propagates:

νW,1(λE, gE) = nEpf(λE, gE)/(NET (λE, gE)) , (3)

where the dependencies of pf and T on gE and λE are determined via the same
simulations that were used to determine P̂s(λE, gE, L = L0). Thus νW depends
on the strengths of the specific chains on which the current set of waves W (t)
propagate:

νW(λE) =
∑

w∈W (t)

νW,1(λE, gE,x(w)) . (4)

Eqns (4) and (1) determine λE as a function of the set of waves W (t). However,
we must approximate λE as a function of just the number of waves. To obtain
this approximation, we note that Equation (4) can be written as

νW(λE) = hnE〈pf/T 〉(λE)/NE (5)
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where 〈pf/T 〉(λE) ≡ 〈pf(λE, gE,x(w))/T (λE, gE,x(w))〉w∈W (t). Given a distribu-
tion ρ(gE;λE) for the strengths of the chains on which the current waves re-
side for a given background rate λE, we can calculate an expected value for
〈pf/T 〉(λE) with respect to this distribution:

E〈pf/T 〉(λE) =

∫
pf(λE, gE)/T (λE, gE)ρ(gE;λE)dgE . (6)

We estimate ρ(gE;λE) using the heuristic that the underlying distribution of
chain strengths in the network be weighted by the expected distance traversed
by a wave at noise level λE before extinction:

ρ(gE;λE) = l(P̂s(λE, gE))ρ0(gE)/

∫
l(P̂s(λE, g

′
E))ρ0(g′E)dg′E (7)

where ρ0(gE) is the underlying distribution of chain strengths, gE ∼ N(Gµ, Gσ),

and l(P̂s) ≡ (P̂s − 1)/ log(P̂s) is the expected fraction of a chain of length L0

that will be traversed by a wave.
Replacing 〈pf/T 〉 in Equation (5) with E〈pf/T 〉 as given by Equations (6)

and (7) we obtain an estimate for νW that depends on the number of waves:

νW(h, λE) ≈ hnEE〈pf/T 〉(λE)/NE . (8)

Equation (8) combined with Eqn (1) then determines h as a function of λE.
This function is plotted in Fig. 2d for the 9 values of chain strength variability
Gσ investigated (red curves).

We further simplified the λE-h relationship to remove the dependence on
Gσ, noting that the curves are very similar over most of the domain and only
begin to deviate from one another when h & 11 (λE & 65 kHz), the curves
for small Gσ deviating the most. Specifically, we replaced the λE and Gσ-
dependent term E〈pf/T 〉(λE, Gσ) in Equation (8) with its value when evaluated
at λE = λE,th(Gµ), Gσ = 0.0015:

νW ≈ hnEE〈pf/T 〉(λE,th(Gµ), 0.0015)/NE . (9)

Equation (9) combined with Eqn (1) determines the λE(h) function that we
used in the RM update rule. This function is plotted (in blue) in Fig. 2d.

2 Comparison of RM and FM NEEC data sets

We compared the behaviors of RMs and their corresponding FMs on the basis
of their respective sets of Mρ NEEC vectors obtained from the Mρ acceptable
runs of each. The method of comparison needed to take into account the high
dimensionality of the data (N = 1020), the small number of FM runs for each
RM instance, and our observations that for many RM instances the set of NEEC
vectors exhibits substantial variability while being constrained to fall approxi-
mately within a low dimensional subspace. Accordingly, we defined two scalar
measures of distance between a target vector and the set of NEEC vectors of a
given RM.

For the first measure, we defined the distance between a target vector D
and the NEEC vector set for RM model ρ to be the shortest distance between
D and any D′ ∈ Dρ,D′ 6= D under the L1 norm:

dmin(D,Dρ) = min{||D −D′||1 ; D′ ∈ Dρ,D′ 6= D} (10)
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where ||D||1 =
∑N
k=1 |Dk|.

For the second measure, we defined a function fρ which maps a target vector
D into a plane defined by the mean of the NEEC vector set for RM model ρ
and the first two PCs of the mean-subtracted NEEC vector set:

fρ(D) =

2∑
k=1

Eρ
k
T

(D − D̄
ρ
)Eρ

k + D̄
ρ
.

We refer to fρ(D) as the ‘2PC reduction’ of D with respect to RM model ρ.
The 2PC reduction of RM vector set Dρ itself, {fρ(D) ; D ∈ Dρ} is a planar
approximation of the NEEC vector set for RM model ρ. (In cases where RM
outliers were found to have a disproportionate impact on the 2PC projection,
the 2PC projection was obtained from PCA with the outliers removed.) We
defined the distance between a target vector D and the NEEC vector set for
RM model ρ to be:

d2PC(D,Dρ) = ||D − fρ(D)||1 . (11)

For each distance measure d ∈ {dmin, d2PC} we defined the set of dis-
tances between target vectors of model ρ′ and the vector set of RM model
ρ = (α, γ,RM):

d(Dρ
′
,Dρ) ≡ {d(D,Dρ) ; D ∈ Dρ

′
} , (12)

We computed two such distance sets according to target vectors being (a) the
RM data set itself (ρ′ = ρ), or (b) the corresponding FM data set (ρ′ =
(α, γ,FM)). For reference we considered the union of distance sets d(Dρ′ ,Dρ)
obtained using the target vector sets Dρ′ of non-corresponding FM models with
the same chain strength variability: ρ′ = (α′, γ,FM), α′ 6= α.

Finally, we generated a single scalar measure of discrepancy between FM
model ρ′ and corresponding RM model ρ for each d ∈ {dmin, d2PC}:

Discrepancy =
1

2

[
〈d(Dρ

′
,Dρ)〉 − 〈d(Dρ,Dρ)〉

]
. (13)

The divisor of 2 is present because NEEC vectors are non-negative unit vectors
in the L1 norm and hence the maximum distance between two NEEC vectors
is 2 (which occurs when they are orthogonal).

Scatter plots of all distance sets d(Dρ′ ,Dρ) are depicted in Supplementary
Fig. 11. The difference between the means of distance sets (a) and (b) con-
stitutes a single scalar measure of overall RM-FM mismatch. Referred to as
Discrepancy, this measure is shown in Supplementary Fig. 12.

For all 90 RM-FM model instance pairs and for both distance measures the
Discrepancy is positive. The Discrepancies for the two distance measure are
usually very similar. Discrepancies increase with strength variability but the
rate of increase varies greatly over RMPs. Discrepancies are below 0.05 for all
models at low strength variabilities (Gσ/Gµ ≤ 0.15), and remain below 0.05
for some models at considerably higher levels of strength variability. In these
cases the activity patterns (NEECs) found in the FM model are very similar to
those typical of the RM, even when there are quite large differences in the mean
number of waves.

Note that the normalization of the NEEC vectors factors out the contribution
of the mean number of waves so that we compare vectors of relative amounts
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of end event activity on chains. Nevertheless, the steep decline in the mean
number of waves in the FM at high strength variabilities coincides with an
increase in RM-FM Discrepancies. For instance, RMP 6 has the highest RM-
FM discrepancy, its FM version exhibits the lowest mean number of waves of
all RMPs at Gσ/Gµ = 0.3, and for Gσ/Gµ ≥ 0.25 all its runs activity died out
before the end, presumably being vulnerable to extinction due to the low mean
number of waves. For Gσ/Gµ ≥ 0.25, RMP 6 gave no acceptably long FM runs
on which to make the comparison.

A strong indicator of RM-FM discrepancy in NEECs is RM entropy: the five
RMPs showing the greatest Discrepancy values (in descending order, RMPs 6,
5, 4, 7 and 1) also have the five lowest RM entropies at high strength vari-
abilities. In these cases there is substantial RM-FM discrepancy in entropy
(Fig. 4b). The increase in FM NEEC entropy relative to RM NEEC entropy is
contributing to the overall RM-FM discrepancy. An example of high RM-FM
discrepancy associated with high entropy discrepancy is RMP 4, Gσ/Gµ ≥ 0.35
(Supplementary Fig. 4). From visual inspection it appears that the minority of
chains which are active is essentially the same for both the RM and FM runs
and hence the increase in entropy must be due to a more uniform pattern of
activation of this minority.

Some further observations can be made about the scatter plots of distance
sets in Supplementary Fig. 11. Consider first the RM-RM distances, which
form the baseline from which RM-FM differences are inferred. We find that
RM target-to-population distances are generally low for the d = dmin measure,
trending slightly downwards and becoming more heterogeneous as strength vari-
ability increases. The higher RM-RM dmin distances at zero strength variability
imply that the data is spread over a larger volume, despite the low variance of
the data at zero strength variability. This is a consequence of the data being
less dimensionally constrained: the volume occupied by the data can be larger
even though the variance is smaller. Likewise, the RM-RM d2PC distances also
trend downwards with strength variability at low strength variabilities. This is
a natural consequence of the planar approximation becoming more valid.

Next, consider the corresponding FM-RM distances. As noted, these are on
average always higher than the RM-RM distances. We note that at zero strength
variability there are seven outlier points of unusually high distance. These
outliers break a pattern of otherwise good RM-FM agreement at Gσ/Gµ = 0.
These outliers are the seven runs with the shortest activity durations among
the ten runs at Gσ/Gµ = 0 with transient activity longer than 10,000 ms (top
right panel of Supplementary Fig. 1). Their high distances arise merely because
high entropy steady states require a longer duration of ongoing activity in order
for the NEEC vector to converge to the long term mean. This effect was not
responsible for the high distances at non-zero strength variabilities which, where
present, reflect genuine RM-FM discrepancies.

By way of contrast, the distances between non-corresponding FM vectors
and RM populations are always larger, and typically hover within a range not
far below the value of 2, the maximum distance between NEEC vectors, attained
when they are orthogonal; that is to say when they have zero overlap. Only for
the two lowest values of strength variability are they somewhat lower: around 1.1
at Gσ/Gµ = 0. and 1.65 at Gσ/Gµ = 0.05. This breakdown of orthogonality can
be attributed to the higher entropy of NEEC vectors at low strength variability.
Whereas two randomly chosen vectors of low entropy will as a rule be nearly
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orthogonal, two vectors of high entropy, being more uniform, will tend to have
substantial overlap.

3 Sources of RM-FM discrepancies

For most model instances there is a great deal of similarity between the
steady states observed in the FM and those found in the RM. At high strength
variabilities discrepancies between the NEECs of RM and FM instances arise.
However, even when the RM-FM discrepancy is large, the islands of circulation
in the optimal ECGs include a large majority of the chains on which activity is
concentrated, in both RM and FM versions.

The main source of discrepancy between the FM and the RM is in the
equilibrium number of waves. This discrepancy is probably due to the approx-
imations involved in the functions defining the RM which neglect the effect of
chain strength variability on the stochastic spiking rate and on the probability
of pulse packet transmission. Setting the conductance values of all excitatory
synaptic noise events to a single value (gE = Gµ) is an oversimplification, since
the strengths of the input synapses of a neuron will follow a distribution ap-
proximately the same as that of the chain strengths, N(Gµ, Gσ).

This simplification impacts on the mean number of waves in two ways.
Firstly, the stochastic spiking rate νS(λE) is increasingly underestimated in the
RM model as chain strength variability increases. This underestimate is because
increased variability in synaptic strengths increases the spike rate response to
balanced stochastic input (Amit & Brunel, 1997). If the mean spiking rate is un-
changed, the higher-than-predicted rate of stochastic spikes will leave less spikes
available to participate in synfire waves and thus the mean number of waves will
be less. This seems to be the main effect at low strength variabilities because
the mean spiking rate in the FM does not deviate much from that estimated
from the mean number of waves in the RM using the relation ν = λE(h)/CE

(results not shown). Secondly, at higher strength variabilities the mean spiking
rate of the FM does decrease relative to that of the RM, resulting in a further
reduction in the mean number of waves. This means that wave propagation
must be less robust to background input when strength variability is taken into
account. Thus the RM significantly overestimates λE,th(gE) at higher chain
strength variabilities.

In principle it would be straightforward although computationally intensive
to overcome these shortcomings via simulations of synfire chains to compute
wave traversal probability as a function not just of chain strength and back-
ground input rate, but of strength variability of background input synapses as
well. Likewise the stochastic spiking rate function could be extended to take
synaptic strength variability into account. With such an improved RM-FM cor-
respondence, we would expect to obtain a similar downward trend in number of
waves with strength variability in the RM as well.

The low mean number of waves in the FM at high strength variability could
be remedied by reducing the effect of noise feedback on chain traversals and
stochastic spiking. This can be achieved by reducing the number of pools in
two ways: (a) reducing the total connectivity (to reduce the amount of noise
feedback and stochastic spiking); and (b) having bigger but fewer pools for a
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given amount of connectivity, in order to increase the robustness of chains.
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