
1 Proof of Theorem

We consider systems of the general form
Ẋ = F (X,u),

where states
X(t) = (X1(t), . . . , Xn(t))

evolve on an open subset X ⊆ Rn and

F = (F1, . . . , Fn)T

is a continuously differentiable function F : X × U → Rn, where U ⊆ R is the set where inputs

u : [0,∞)→ R

take values. Dot indicates derivative with respect to time. As a function of time, the input signal u(t) is
assumed to be continuous or at most has a discrete set of discontinuities (for example, a step function). We
assume that the partial derivatives

∂Fj

∂Xi
(X,u)

and

∂Fj

∂u
(X,u)

have the same sign (either ≥ 0 or ≤ 0) for all (X,u) ∈ X × U . For those derivatives that are not identically
zero, we write ϕij for the sign (±1)

ϕij := sign
∂Fj

∂Xi
(X,u)

and γi for the sign (±1)

γi := sign
∂Fi

∂u
(X,u).

When a derivative is identically zero, we define ϕij = 0 or γi = 0.

A path π from the input u to a node Xj means, by definition, a sequence of k indices

`1, `2, . . . , `k = j

such that γ`1 6= 0 and
ϕ`i,`i+1

6= 0

for all i = 1, . . . , k − 1. We denote by s(π) the sign of the path, defined as the product

s(π) := γ`1 ϕ`1`2 ϕ`2`3 . . . ϕ`k−1`k .

Similarly, a path from a node Xi to a node Xj means, by definition, a sequence of k indices

`1, `2, . . . `k = j

such that
ϕi,`1 6= 0
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and
ϕ`i,`i+1

6= 0

for all i = 1, . . . , k − 1. We denote by s(π) the sign of the path, defined as the product

s(π) := ϕi`1 ϕ`1`2 ϕ`2`3 . . . ϕ`k−1`k .

If there is a path from the input u to a node Xj , we say that Xj is reachable. If there is a path from a node
Xi to the output node Xn, we say that the node Xi is observable.

We recall the statement of part 1 of the Theorem:

If the system is initially in steady state, the response of the output xn(t) will monotonically increase or decrease
in time in response to changes in the input u(t) if u(t) is monotonically increasing or decreasing in time and
all the directed paths from input node u(t) to the output node xn(t) have the same parity. Furthermore,
monotonically increasing (decreasing) u(t) will trigger monotonic increase (respectively, decrease) of xn(t) if
parity is positive or will trigger monotonic decrease (respectively, increase) if parity is negative.

Proof of part 1 of Theorem

We start by “pruning” those state variables Xj which do not lie in any path from the input node to the output
node Xn. We now formalize this construction, which is analogous to the “Kalman decomposition” reduction
to minimal systems in linear control theory [1]. We start by splitting the set of variables X into four disjoint
subsets of variables X = (x, y, z, w), as follows:

1. the output node Xn is a component of the vector x,

2. the components of x are reachable and observable,

3. the components of y are observable but not reachable,

4. the components of z are reachable but not observable, and

5. the components of w are neither reachable nor observable.

We assume without loss of generality that the output node Xn is in the first set of variables, x, since otherwise
there would be no path from the input to output, and the output is then constant when starting a from steady
state. It is clear that, with this partition, the equations look as follows:

ẋ = f(x, y, u)

ẏ = g(y)

ż = h(x, y, z, w, u)

ẇ = k(y, w)

(for example, there cannot be a z nor w dependence in f and in g, since otherwise the z and/or w variables
would be observable).

To prove part 1 of the Theorem, we need to show, for the original system Ẋ = F (X,u), that if we start from
a steady state F (X0, u0) = 0 and if u(t) is monotonic in time, with u(0) = u0, then Xn will be also monotonic
in time (with the same, or opposite, monotonic behavior depending on parity). Write X0 = (x0, y0, z0, w0),
so F (X0, u0) = 0 means that

f(x0, y0, u0) = g(y0) = h(x0, y0, z0, w0, u0) = k(y0, w0) = 0 .
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The assumption that all directed paths from the input node u to the output node Xn have the same parity
applies also to the subsystem given by the variables in x in which the y variables are set to y0:

ẋ = f̂(x, u) = f(x, y0, u) (1)

with initial state x(0) = x0, because partial derivatives of f̂ with respect to x and u are also partial derivatives
of the original F .

Suppose that we have already proved the theorem for this subsystem in which all variables are reachable and
observable. We claim next that the same is then true for the original system. Consider the solution x(t)
of (1) with input u = u(t) and x(0) = x0. Consider also the solution of the full system Ẋ = F (X,u) with
X(0) = X0 and the same input u, and write it in the corresponding block form

X(t) = (ξ(t), ψ(t), ζ(t), ω(t)).

We want to prove that ξ(t) = x(t) for all t ≥ 0, from which the claim will follow. But this just follows because
g(y0) = 0 implies that y(t) ≡ y0. (Note that the variables ζ(t) and ω(t) do not affect the output variable,
which is a component of ξ(t).)

We now prove the theorem for the x-subsystem, for which all variables are reachable and observable. For
ease of notation, we will write f̂ simply as f , use n for the size of x, and assume that the output node is
xn. Pick any index i ∈ {1, . . . , n}. By reachability, there is at least one path π from the input to xi and,
if i < n, then by observability there is at least one path θ from xi to the output node xn. We claim that
every other path π′ from the input to xi has the same parity as π. Suppose without loss of generality that
the parity of π is +1. We need to see that every other path π′ from the input to xi also has parity +1. If
i = n, this is true by assumption (all paths from input to output have the same parity). So assume i < n.
Suppose that π′ has parity −1. Then, the path πθ obtained by first following π and then following θ has parity
(+1) ∗ ρ = ρ, where ρ is the parity of θ, and the path π′θ obtained by first following π′ and then following θ
has parity (−1) ∗ ρ = −ρ. So we have two paths from input to output with different parity, which contradicts
the assumption of the Theorem. In conclusion, every two paths from the input to any given node have the
same parity.

We assign a label with values “+1 or −1” σu and σi, i = 1, . . . , n, to the nodes u and each node x1, . . . , xn
respectively, as follows: σu := +1, σi := sign of any path from u to xi. A key observation is that, if ϕij = +1
then σi = σj , and if γi = +1 then σu = σi. Indeed, if we have a path π from the input to xi, then a path π′

can be obtained, from the input to xj , by simply adjoining the edge from i to j, which has parity equal to
the parity of π. Since σj is the sign of any path from the input to xj , it follows that σi = σj , as claimed. The
statement for γi = +1 is simply (since we defined σu := +1) that σi = +1 if the one-step path from the input
to node xi has parity 1, which means that all paths have this parity. Similarly, if ϕij = −1 then σi = −σj ,
and if γi = −1 then σu = −σi.
Now make the change of variables xi 7→ σixi (i.e., reverse the sign of variables with a “−1” label). Writing
the system in the new variables, we have now that

∂fi
∂u

(x, u) ≥ 0 (2)

for all i = 1, . . . , n and
∂fj
∂xi

(x, u) ≥ 0 (3)

for all i, j = 1, . . . , n. Thus in the new variables we have what is called a cooperative system [2].

We must prove that, if u = u(t) is a monotonically increasing input for a cooperative system, and if x(0) = x0
is a steady state f(x0, u0) = 0, then every coordinate xi(t) of x(t) (and, in particular, the output node)
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is monotonically increasing as well. (In the original coordinates, before sign reversals, xi(t) will decrease if
σi = −1.) Similarly if u = u(t) is a monotonically decreasing input for a cooperative system, and if x(0) = x0
is a steady state f(x0, u0) = 0, then every coordinate xi(t) of x(t) (and, in particular, the output node) is
monotonically decreasing as well. We prove the increasing statement, since the second statement is proved
analogously. From now on, for any two vectors a, b ∈ Rn, we write simply a ≤ b to mean that ai ≤ bi for each
i = 1, . . . , n.

We let ϕ(t, x0, v) denote the solution of ẋ = f(x, u) at time t > 0 with initial condition x(0) = x0 and input
signal v = v(t). Kamke’s Comparison Theorem (see [2] for systems without inputs, and [3] for an extension
to systems with inputs), asserts as follows: Let y(t) and z(t) be two solutions of the system ẋ = f(x, u)
corresponding, respectively, to an input v(t) and an input w(t). Suppose that y(0) ≤ z(0) and that v(t) ≤ w(t)
for all t ≥ 0. Then, y(t) ≤ z(t) for all t ≥ 0.

Now pick an input v that is non-decreasing in time and an initial state x0 that is a steady state with respect to
v0 = v(0), that is, f(x0, v0) = 0. Since v(t) is non-decreasing, we have that v(t) ≥ v(0) so that, by comparison
with the input that is identically equal to v(0), we know that

ϕ(h, x0, v) ≥ ϕ(h, x0, v0)

for all h ≥ 0, where, by a slight abuse of notation, “v0” is the function that has the constant value v0. We
used the comparison theorem with respect to inputs and with the same initial state. The assumption that
the system starts at a steady state gives that ϕ(h, x0, v0) = x0 for all h ≥ 0. Therefore:

x(h) ≥ x(0) for all h ≥ 0 . (4)

Next, we consider any two times t ≤ t+h. We wish to show that x(t) ≤ x(t+h). Using (4) and the comparison
theorem now applied with respect to initial states and the same input, we have that:

x(t+ h) = ϕ(t, x(h), vh) ≥ ϕ(t, x(0), vh) ,

where vh is the “tail” of v, defined by: vh(s) = v(s + h). On the other hand, since the function v is non-
decreasing, it holds that vh ≤ v, in the sense that the inputs are ordered: vh(t) ≤ v(t) for all t ≥ 0. Therefore,
using once again the comparison theorem with respect to inputs and with the same initial state, we have that

ϕ(t, x(0), vh) ≥ ϕ(t, x(0), v) = x(t)

and thus we proved that x(t+ h) ≥ x(t). So x is a non-decreasing function. This concludes the proof. See [4]
for a related result.

We recall the statement of part 2 of the Theorem:

If the system is initially in steady state, the response of the output xn(t) will monotonically increase or
decrease in time in response to changes in the input u(t) if all the directed paths from the input nodes to
the output node pass through an internal node xi(t) with monotonically increasing or decreasing dynamics
and all the directed paths from input node xi(t) to the output node xn(t) have the same parity. Furthermore,
monotonically increasing (decreasing) xi(t) will trigger monotonic increase (respectively, decrease) of xn(t) if
parity is positive or will trigger monotonic decrease (respectively, increase) if parity is negative.

Proof of part 2 of Theorem

The assumption that all directed paths from the input node u to the output node Xn must pass through the
internal node Xi can be formalized by splitting the set of nodes X into three subsets, X = (x, y, z, w), where
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1. the components of x are those nodes Xj , j 6= i, for which there is at least one path from the input node
u to Xj which does not pass through node Xi,

2. y = Xi, and

3. the components of z are all remaining nodes, including Xn.

For this partition, the equations look as follows:

ẋ = f(x, y, z, u)

ẏ = g(x, y, z, u)

ż = h(z, y)

because, if there were any dependence of h on some coordinate xj , then there would be a path from the input
to some component of z (follow a path to xj and concatenate it with an edge from xj to this component).

The condition that all the directed paths from y = Xi to the output node Xn have the same parity means
that in the system

ż = h(z, v)

(where we now view y(t) as an input, which we write as “v(t)” to avoid confusion) all paths from the input
to the output have the same parity, as in the hypothesis of part 1 of the Theorem. Suppose that we consider
an input u, starting from a steady state (x0, y0, z0). Think of v(t) = y(t) as an input. Since we started from a
steady state, we know that h(v(0), z0) = 0. This, if v(t) is monotonic, part 1 of the theorem gives us that the
output is monotonic, increasing or decreasing depending on parity and the increasing or decreasing character
of the input. So part 2 is proved as well.

2 A result on steady-state gains

Suppose that now that
Ẋ = F (X,u)

is a system with the following two properties:

1. for each nondecreasing input u(t), and any trajectory starting from a steady state F (X0, u(0)) = 0, the
output Xn(t) is nondecreasing, and

2. for each constant input u(t) ≡ ū, and any initial state, the output Xn(t) converges to a value G(ū) that
depends only on ū (and not on the initial state, which need not be a steady state).

Observe that the first condition holds provided that all the directed paths from input node u(t) to the output
node Xn(t) have positive parity. (An analogous result to the one stated below holds if all paths have negative
parity and the output is nonincreasing.)

We call G the i/o steady state response of the system. Such a function exists, for example, if for each constant
input ū there is a (necessarily unique) globally asymptotically stable steady state of Ẋ = F (X, ū).

Proposition. For each nondecreasing input u(t), and each T ≥ 0, Xn(T ) ≤ G(u(T )).

Proof. Consider a nondecreasing input u(t) and a steady state F (X0, u(0)). Fix an arbitrary time T ≥ 0. Let
v(t) be the nondecreasing input that is defined by v(t) := u(t) if t ≤ T and v(t) = u(T ) for all t > T . Then
the output Xn(t) corresponding to solving Ẋ = F (X, v(t)) with X(0) = x0 is nondecreasing, by assumption,
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and so in particular Xn(T ) ≤ Xn(t) for all t > T . Now consider the initial state X(T ) and the constant input
w(t) ≡ u(T ). It follows from the second assumption that Xn(t)→ G(u(T )) as t→ +∞, which together with
Xn(T ) ≤ Xn(t) for all t > T gives that Xn(T ) ≤ G(u(T )), as desired.
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