# Biochemical Characterization of Kat1: a Domesticated *hAT*-Transposase that Induces DNA Hairpin Formation and *MAT*-Switching

Kishore K. Chiruvella, Naghmeh Rajaei, Venkateswara Rao Jonna, Anders Hofer and Stefan U. Åström

#### **Supplementary information**

Supplementary Table 1. List of oligonucleotides used for generating substrates for DNA binding, DNA cleavage and DNA strand transfer assays

| Name  |               | DNA sequence (5'-3')                         | Comments  |
|-------|---------------|----------------------------------------------|-----------|
| ККС3  | Top strand    | TGAATATATCCATCTTAATCAGACGTATAC<br>AGAATTCACC | Figure 1  |
| KKC4  | Bottom strand | GGTGAATTCTGTATACGTCTGATTAAGATG<br>GATATATTCA | Figure 1  |
| KKC5  | Top strand    | TGAATATATCCATCTTAATCAGACGTATAC<br>tacgacatcg | Figure S5 |
| KKC6  | Bottom strand | cgatgtcgtaGTATACGTCTGATTAAGATGGAT<br>ATATTCA | Figure S5 |
| KKC7  | Top strand    | CATCTTAATCAGACGTATACAGAATTCAC<br>C           | Figure S5 |
| KKC8  | Bottom strand | GGTGAATTCTGTATACGTCTGATTAAGATG               | Figure S5 |
| KKC21 | Top strand    | TGAAGCTATCCATCTTAATCAGACGTATAC<br>AGAATTCACC | Figure 2  |
| KKC22 | Bottom strand | GGTGAATTCTGTATACGTCTGATTAAGATG<br>GATAGCTTCA | Figure 2  |
| KKC23 | Top strand    | TGAATATCGCCATCTTAATCAGACGTATAC<br>AGAATTCACC | Figure 2  |
| KKC24 | Bottom strand | GGTGAATTCTGTATACGTCTGATTAAGATG<br>GCGATATTCA | Figure 2  |
| KKC25 | Top strand    | TGAATATATCACTCTTAATCAGACGTATAC<br>AGAATTCACC | Figure 2  |
| KKC26 | Bottom strand | GGTGAATTCTGTATACGTCTGATTAAGAGT<br>GATATATTCA | Figure 2  |
| KKC27 | Top strand    | TGAATATATCCATCTTCAGCAGACGTATAC<br>AGAATTCACC | Figure 2  |

| KKC28  | Bottom strand  | GGTGAATTCTGTATACGTCTGCTGAAGAT<br>GGATATATTCA | Figure 2                                                                                  |
|--------|----------------|----------------------------------------------|-------------------------------------------------------------------------------------------|
| KKC29  | Top strand     | TGAATATATCCATCTTAATCATCCGTATAC<br>AGAATTCACC | Figure 2                                                                                  |
| KKC30  | Bottom strand  | GGTGAATTCTGTATACGGATGATTAAGAT<br>GGATATATTCA | Figure 2                                                                                  |
| KKC31  | Top strand     | TGAATATATCCATCTTAATCAGACTGATAC<br>AGAATTCACC | Figure 2                                                                                  |
| KKC32  | Bottom strand  | GGTGAATTCTGTATCAGTCTGATTAAGATG<br>GATATATTCA | Figure 2                                                                                  |
| KKC33  | Top strand     | TGAATATATCCATCTTAATCAGACGTCGAC<br>AGAATTCACC | Figure 2                                                                                  |
| KKC34  | Bottom strand  | GGTGAATTCTGTCGACGTCTGATTAAGAT<br>GGATATATTCA | Figure 2                                                                                  |
| KKC35  | Top strand     | TGAATATATCCATCTTAATCAGACGTATCA<br>AGAATTCACC | Figure 2                                                                                  |
| KKC36  | Bottom strand  | GGTGAATTCTTGATACGTCTGATTAAGATG<br>GATATATTCA | Figure 2                                                                                  |
| EBO110 | Forward primer | GACATGGAAAGGAAGACATGG                        | PCR for EMSA                                                                              |
| EBO213 | Reverse primer | GCTGTATCTAAAACAGGGACG                        | and cleavage<br>assays (Figure<br>3B, Figure<br>6B,C)                                     |
| EBO211 | Forward primer | CAATTCACACCATTTGATGGTG                       | PCR for EMSA                                                                              |
| EBO213 | Reverse primer | GCTGTATCTAAAACAGGGACG                        | and strand<br>transfer assays<br>(Figure 3C,D;<br>Figure 4,<br>Supplementa1<br>Figure S2) |
| KKC52  | Forward primer | TATACGTCTGATTAAGATG                          | PCR (pre-                                                                                 |
| KKC55  | Reverse primer | TGATGATAGAATAAAGAGAAG                        | cleaved DNA<br>substrate) for<br>strand transfer<br>assay (Figure<br>4C)                  |
| EBO122 | Forward primer | CAAGTCTATTCGTATTCTTATTC                      | PCR for<br>cleavage assay<br>(Supplemental                                                |

| EBO111 | Reverse primer | CTATGTATCAATTCACCACC | Figure S3) |
|--------|----------------|----------------------|------------|
|        |                |                      |            |

| Plasmid | Kat1 mutation             | Primers used for making mutation                  |
|---------|---------------------------|---------------------------------------------------|
| pNR30   | pGAT2+KAT1G               | Cloning of Naghmeh 84/85 in pGAT2 by SalI         |
| pNR31   | pGAT2+KAT1G(D310A)        | Site direct mutagenesis in pNR30 (Naghmeh29/30)   |
| pNR38   | pGAT2+KAT1G(D377A)        | Site direct mutagenesis in pNR30 (Naghmeh31/32)   |
| pNR45   | pGAT2+KAT1G(E895A)        | Site direct mutagenesis in pNR30 (Naghmeh33/34)   |
| pNR117  | pGAT2+KAT1G(W328A)        | Site direct mutagenesis in pNR30 (Naghmeh187/188) |
| pNR135  | pGAT2+KAT1G               | Site direct mutagenesis in dimerization domain of |
|         | (K907A/R908A/R909A/R911A) | pNR30 (Naghmeh183/184)                            |
| pNR140  | pGAT2+KAT1G (W576A)       | Site direct mutagenesis in pNR30 (Naghmeh164/165) |
| pNR144  | pGAT2+KAT1G (W312A)       | Site direct mutagenesis in pNR30 (Naghmeh185/186) |
| pNR204  | pGAT2+KAT1G(C130A/C133A)  | Site direct mutagenesis in pNR30 (Naghmeh207/208) |
| pNR206  | pGAT2+KAT1G(F624A)        | Site direct mutagenesis in pNR30 (Naghmeh211/212) |
| pNR207  | pGAT2+KAT1G(F898A)        | Site direct mutagenesis in pNR30 (Naghmeh213/214) |
| pNR210  | pGAT2+KAT1G(S899A)        | Site direct mutagenesis in pNR30 (Naghmeh219/220) |
| pNR213  | pGAT2+KAT1G(S906A)        | Site direct mutagenesis in pNR30 (Naghmeh221/222) |
| pNR217  | pGAT2+KAT1G(S886A)        | Site direct mutagenesis in pNR30 (Naghmeh223/224) |
| pNR221  | pGAT2+KAT1G(Y578A)        | Site direct mutagenesis in pNR30 (Naghmeh205/206) |
| pNR225  | pGAT2+KAT1G(C402A/H405A)  | Site direct mutagenesis in pNR30 (Naghmeh209/210) |

### Supplementary Table 2. List of plasmids used for Kat1 expression and purification in bacteria

## Supplementary Table 3. List of plasmids used for Kat1 expression in yeast

| Plasmid | Kat1 mutation    | Primers used for making mutations                                               |
|---------|------------------|---------------------------------------------------------------------------------|
| pEB155  | pCXJ18- pGREG526 | pGREG526 module (EBO320/321)<br>incorporated in pCXJ18 (HindIII&<br>XbaI) by HR |
| pNR6    | PEB155+KAT1G     | Naghmeh167/EBO313 by drag and                                                   |

|        |                                       | drop cloning                           |
|--------|---------------------------------------|----------------------------------------|
| pNR122 | PEB155+KAT1G(W312A)                   | Site direct mutagenesis in             |
|        |                                       | pNR6(Naghmeh185/186)                   |
| pNR126 | PEB155+KAT1G(W868A)                   | Site direct mutagenesis in             |
|        |                                       | pNR6(Naghmeh189/190)                   |
| pNR131 | PEB155+KAT1G(W328A)                   | Site direct mutagenesis in             |
|        |                                       | pNR6(Naghmeh187/188)                   |
| pNR148 | PEB155+KAT1G(K907A/R908A/R909A/R911A) | Site direct mutagenesis of the part of |
|        |                                       | the conserved hAT domain of pNR6       |
|        |                                       | (Naghmeh183/184)                       |
| pNR151 | PEB155+KAT1G (W576A)                  | Site direct mutagenesis in             |
|        |                                       | pNR6(Naghmeh164/165)                   |
| pNR208 | PEB155+KAT1G(F898A)                   | Site direct mutagenesis in             |
|        |                                       | pNR6(Naghmeh213/214)                   |
| pNR228 | pEB155+KAT1G(S899A)                   | Site direct mutagenesis in pNR6        |
|        |                                       | (Naghmeh219/220)                       |
| pNR231 | pEB155+KAT1G(S906A)                   | Site direct mutagenesis in pNR6        |
|        |                                       | (Naghmeh221/222)                       |
| pNR234 | pEB155+KAT1G(S886A)                   | Site direct mutagenesis in pNR6        |
|        |                                       | (Naghmeh223/224)                       |
| pNR237 | pEB155+KAT1G(Y578A)                   | Site direct mutagenesis in pNR6        |
|        |                                       | (Naghmeh205/206)                       |
| pNR245 | PEB155+KAT1G(C130A/C133A)             | Site direct mutagenesis in pNR6        |
|        |                                       | (Naghmeh207/208)                       |
| pNR247 | PEB155+KAT1G(C402A/H405A)             | Site direct mutagenesis in pNR6        |
|        |                                       | (Naghmeh209/210)                       |
| pNR248 | PEB155+KAT1G(F624A)                   | Site direct mutagenesis in             |
|        |                                       | pNR6(Naghmeh211/212)                   |
|        |                                       |                                        |

### Supplementary Table 4. List of primer(s) sequences used for site-directed mutagenesis

| Name   | DNA sequence (5'-3')                          |
|--------|-----------------------------------------------|
| EBO313 | GCGTGACATAACTAATTACATGACTCGAGGTCGACCTAGGATTCT |
| EBO320 | GTCACGACGTTGTAAAACGACGGCCAGTGAATTCGAGCTCGGTAC |

| EBO321     | GAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTA                     |
|------------|-------------------------------------------------------------------|
| Naghmeh84  | GGATCGTCGACATGATATCATCGAGTTTACATAATTTG                            |
| Naghmeh85  | GGATCGTCGACCTAGGATTCTGTTTTACGTAC                                  |
| Naghmeh164 | GTTAGAACAAGAGCGACATATTCTGTG                                       |
| Naghmeh165 | CACAGAATATGTCGCTCTTGTTCTAAC                                       |
| Naghmeh167 | GAATTCGATATCAAGCTTATCGATACCGTCGACAATGATATCATCGAGT<br>TTACATAATTTG |
| Naghmeh183 | CGATCCTTACAAGTGCGGCAGCGGGGGGGGGGGGGGCGATCTCACCTACAAG              |
| Naghmeh184 | CTTGTAGGTGAGATCGCTCCCGCTGCCGCACTTGTAAGGATCG                       |
| Naghmeh185 | GTTTTAGATCATGCGTCAGACACAAGG                                       |
| Naghmeh186 | CCTTGTGTCTGACGCATGATCTAAAAC                                       |
| Naghmeh187 | GTTATTGTGATTGCGGATAAATACC                                         |
| Naghmeh188 | GGTATTTATCCGCAATCACAATAAC                                         |
| Naghmeh189 | CATCACAAGATTGCGGCTGATATC                                          |
| Naghmeh190 | GATATCAGCCGCAATCTTGTGATG                                          |
| Naghmeh205 | GTTAGAACAAGATGGACAGCTTCTGTGTTATGTTTTGAAAG                         |
| Naghmeh206 | CTTTCAAAACATAACACAGAAGCTGTCCATCTTGTTCTAAC                         |
| Naghmeh207 | GATAATAATCTGTACAGAGCTATGCTAGCCTCCATGGTGTTAAAAG                    |
| Naghmeh208 | CTTTTAACACCATGGAGGCTAGCATAGCTCTGTACAGATTATTATC                    |
| Naghmeh209 | CTTCATTTAAGCGCTGTTAATGCTTCATTGAATGTC                              |
| Naghmeh210 | GACATTCAATGAAGCATTAACAGCGCTTAAATGAAG                              |
| Naghmeh211 | CTTTTGAAACCATGCCAGACGATAACAG                                      |
| Naghmeh212 | CTGTTATCGTCTGGCATGGTTTCAAAAG                                      |
| Naghmeh213 | CATATCGAACATATCGCCAGCATATCGTCGATC                                 |
| Naghmeh214 | GATCGACGATATGCTGGCGATATGTTCGATATG                                 |
| Naghmeh219 | CATATCGAACATATCTTCGCCATATCGTCGATCCTTAC                            |
| Naghmeh220 | GTAAGGATCGACGATATGGCGAAGATATGTTCGATATG                            |
| Naghmeh221 | CGTCGATCCTTACAGCTAAAAGGAGAGGAAG                                   |

| Naghmeh222 | CTTCCTCTCTTTAGCTGTAAGGATCGACG       |
|------------|-------------------------------------|
| Naghmeh223 | CAATCACCTAATGGACGCCATTGCTGTTTCATGAC |
| Naghmeh224 | GTCATGAAACAGCAATGGCGTCCATTAGGTGATTG |

| ${\tt GGTTGGTCGATGGATTTTCGTGGTCCGTTTTTTTAAGTGGAAGTGTAGGGTGT$  |
|---------------------------------------------------------------|
| EBO 122                                                       |
| CAGTTTGACTTTACTATTATTCTCTTTAATTATATATACAAGTCTATTCGTATTCT      |
|                                                               |
| ТАТТСАААТТАССТСАААААААААТGACAATATATCGAAGGACATATATAAAA         |
| FBO 110                                                       |
| GATAAGACATGGAAAGGAAGACATGGTTGGTCTGATTTCATTAACGTTTCAG          |
|                                                               |
| <b>GTATAC</b> ATCAAAATTCAGTGAATTTAATTCTGTCGTTTGAAACCAGTTTAGGT |
|                                                               |
| GAAATTGGATTAGGTGGTGAATTGATACATAGTAAATAATTACTGGTCCATAA         |
| Ebo 111                                                       |
| TTTTTGTGAATATTTATGCTCTTTATACTATGTAGTTTTTTATCCTGAATATTA        |
|                                                               |
| ACGATTGCTCACCTAAATTTCTCGTTTAAAATCCCCTATAATGTGAATGGTTTT        |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
| KKC52                                                         |
|                                                               |
| CAATATGTCATTTGTCAATTTGTCTGCATTTCAAACAAAGGAAAAATAAACTT         |
|                                                               |
| AAGGACATATATCTGAAAATATACCACATAGATACGTCCCTGTTTTTAGATACA        |
| EBO 213                                                       |
|                                                               |
|                                                               |
| TTGTCAACTATGCTCAAGGAATAGCCTCACAAACCTAAATCCTCAGCATTGAC         |
|                                                               |

CGGAGTC

**Supplementary Figure 1**. DNA sequence and oligonucleotides used in the *MATa1-MATa2* intergenic region. Arrows indicate the positions of oligonucleotide primers used for generating PCR amplified DNA substrates for DNA cleavage, DNA binding and DNA strand-transfer analyses. GTATAC at the beginning of the TIRs is shaded. The full set of oligonucleotides used are shown in Table S1.



**Supplementary Figure 2.** Kat1 generates hairpin-capped DSBs. (A) *In vitro* cleavage assay using a 196-bp DNA substrate from TIR-R (generated using EBO211 and EBO 213), schematically shown. TIR indicated as black arrow head. The DNA substrate was mixed with GST-Kat1 or without protein (-) followed by separation on 8% denaturing PAGE. The substrate, hairpin and linear products are indicated. Both strands of the substrate were <sup>32</sup>P-labeled in their 5′-ends. (B) Kat1 cleavage resulted in flanking DNA hairpin formation by intramolecular transesterification, expecting to generate a hairpin (~294-nts) and a ~49-nt linear product. Note that these conditions do not allow nucleotide resolution of the products. M indicates a 25-bp DNA ladder.



**Supplementary Figure 3.** Kat1 cleaves TIR-L *in vitro*. (A) *In vitro* cleavage assay using a 212-bp DNA substrate from TIR-L (generated using EBO111 and EBO122) schematically shown. TIR indicated as black arrow head. The expected lengths of the products are shown. (B) The DNA substrate (~4 nM) was mixed with GST-Kat1, the indicated DDE-mutants or without protein (-) followed by separation on 8% PAGE using native conditions. Kat1 cleavage resulted in flanking DNA hairpin formation by intramolecular transesterification, expecting to generate a hairpin of ~124-bp and a ~88-bp linear product. M indicates a 25-bp DNA ladder.

lactis AAGACATGG----AAAGGAAGACATGGTTGGTCTGATTTCATTAACGTTTCAGGTATACA 218 dobzhanskii AAGACATGGTGAAAAAAAAAAAAAAGACATGTTAGCTTTGATCTCATTCTGGTTTCAAGTATACA 239 marxianus CAGAGAGAG----CTAAGACATAATGTTT--TAAGATTTCATTTTAGTTTCAGGTATACA 217 .\*\*\* \* .\* lactis TCAAAATTCAGTGAATTTAATTCTGTCGTTTGAAACCAGTTTAGGTGAAATTGGATTAGG 278 dobzhanskii TCATAATCGAGTGAATTTGAATCTATCG-CTCAGTTGAATTTGGGTGAACTTGAAGTACT 298 marxianus TCAAATTTTAATGAATTCAATTGTCCTTCTTGACTAGTTTCTTGATGGATTCTGAGTACT 277 \*\*\* \* \* \* \*\*\*\*\* \* \* \* \* \* : : \* \* \* \* \* \* \* \* \* \* lactis TGGTGAATT-GATACATAGTAAATAATTACTGGTCCATAATTTTTGTGAATATTTATGCT 337 TGGTGAATTTAATGCATAGTAATTAAATAAT---CTATACCGTCGTTGGGTAAAAATACA 355 dobzhanskii TGGTGAATTAAAGTAATGGTTTACTATGTAT---TTTGAAGTTTTAG---CTATCCGAC 330 marxianus \*\*\*\*\*\*\* •\* •\*\*•\*\* •\*\* •\*\* :\*.. \* :\* . : : : . . . lactis CTTTATACTATGTAGTTTTTATCCTGAATATTA--ACGATTG---CTCACCTAAATTTCT 392 dobzhanskii GAGAGTACTTTTTGTTTGAAATACTCAATTAAAG-TCAGTAGTTTTTTAGCTTATTTTGT 414 marxianus GACAGTTAACTTTATTAAATAAAATAAATCTTACTACTATTG-TTAATTTATAATTCCGT 389 : :.\*:.: \* \*. \*: ::\*:..\* \*\*\* ::\* :\* .\*:\* : : .\*:\*:\* lactis CG--TTTAAAATCCCTATAATG----TGAATGGTTTTAGATGATT-CATGGTGTTTT-TA 444 dobzhanskii CG--TTCGATTTCACACTGTAG----CAGTCCATTTCTCCTCAGCGTATCGTTTTT-TG 467 marxianus CTGAATAAATTTCTAATTTTTGGTATATATCTGTCTTTGGTAGTCCTAAATAACATAGTT 449 \* \* \* \* \* \* \* \* \* \* \* \* .: .\* \* : \* \* : : \*\*: \* lactis TTAGTGACCGAAATGTTTAGT-TTTGGATACTTGATGATAGAATAAAGAG--AAGTGTTA 501 dobzhanskii CTGGTATCAGAAAGATGAAAT-ATTGCTGAAGTTATCGTGACAGTAAGTC--AACAGCTC 524 marxianus TTGGAAGCTGTTTGATATCTTGTAAACTGATTTAAATATACCAAAAATTCATAAGAGAGC 509 \*\* :\* TGTAAAAAGTGTTAATTCATGTTAAATTCACCTACCTTCTTGAGATTCACACCACTT 561 lactis ATTCAAAAGTGTTAATTCTGGTAGAATTCACCAACTTCTTGAGAGTCAATTCACTACAAT 584 dobzhanskii TTAATAAATGGTTAATTCATCAGAAATTCACCAGTTCTTCATAAATGAAATCACCAACTC 569 marxianus lactis TGATGGTGAATATATCCATCTTAATCAGACGTATACAG--AATTCACCTTCAGATGTGTA 619 dobzhanskii TGAAGGTGAATACATCCACCTAAATCAGATGTATACAGGAAATACATGTTGTGATG-CAG 643 marxianus TTCGGGTGAATTTATTCACCATATTTTGCTGTATACTA----AACTAATGAAAACCCTTC 625 \* . \*\*\*\*\*\*: \*\* \*\* \*::\*:\*: \*\*. \*\*\*\*\*:. ::\*: \* :.\* :

TGAATT-subterminal repeat, AATTCA-complement of subterminal repeat, GTATAC-Beginning of TIRs

**Supplementary Figure 4.** Multiple sequence alignment of the *MATa1-a2* intergenic region in *K. lactis*, *K. dobzhanskii* and *K. marxianus*. Identical bases in all three species are indicated by asterisks. GTATAC in blue represents the beginning of TIRs. 5'-TGAATT (yellow) and its reverse complement (red) are subterminal repeats.



Supplementary Figure 5. Kat1-DNA binding is not sequence specific. EMSA was performed with MATa1-MATa2 intergenic region (579 bp) covering TIR-L and TIR-R, with increasing amounts of Kat1 for 1h at 4°C. Identical amounts (75, 150 and 300ng/reaction) of two different competitor duplexes, same as the probe and Drosophila DNA (570 bp) were used to compete the bandshift.



**Supplementary Figure 6.** Thrombin protease cleavage of GST-Kat1. Coomassie-stained SDS-PAGE showing cleavage of the GST tag from the GST-Kat1 fusion protein. Approximately 10  $\mu$ g of Kat1 was incubated with increasing concentrations (0.5, 1, 2.5, 5, 10 units) of thrombin protease for 22 hours at 4°C. The molecular weight (MW) is shown on the left. GST-Kat1, Kat1, GST and thrombin protease are indicated on the right.

|          | 130 133                                                                                                                  |            |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------|------------|--|--|
| Kat1     | SRPYKGTVQAVWSYFKENADNNLYR- <mark>C</mark> ML <mark>C</mark> SMVLKVEKH-QNGNTVRI                                           | 150        |  |  |
| Hermes   | -RHKGTSFIWNVLADIQKEDDTLVEGWVF <mark>C</mark> RK <mark>C</mark> EKVLKYTTRQTSN                                             | 67         |  |  |
| Tfo1     | KRTLNSKLQPSAIYKHGAQLTTDGDNKYWL- <mark>C</mark> KY <mark>C</mark> HIRGHHHTALFSSESTTS                                      | 144        |  |  |
| Drifter  | CH <sub>C</sub> TQQKAHKPKAYVASNTRN                                                                                       | 43         |  |  |
| Restless | TKGAKVAWWWVKGFRMRLKSNDKKLRWV- <mark>C</mark> RL <mark>C</mark> VRRKCRTVSHFSYESNGSAN                                      | 132        |  |  |
|          | : * *                                                                                                                    |            |  |  |
|          | 310 312 328                                                                                                              |            |  |  |
| Kat1     | LVL <mark>D</mark> H <mark>W</mark> SDTR-LRSFIGVVIVIWDKYQKKQRSFVIGMPETVNHSSAAIKDQLEQVIQH                                 | 363        |  |  |
| Hermes   | ATI <mark>D</mark> L <mark>W</mark> TDNYIKRNFLGVTLHYHENNELRDLILGLKSLDFERSTAENIYKKLKAIFLQ                                 | 234        |  |  |
| Tfo1     | ISV <mark>D</mark> A <mark>W</mark> TSEE-GTNYLAVVAHFLD-ESHKLQTALLDLPPLKG-PHSGENLAKALSKVIDF                               | 325        |  |  |
| Drifter  | IAF <mark>D</mark> G <mark>W</mark> TSRN-RHSFFSINAFFLDDETFQPRKILLGLPNVAM-AHTGENICAAVTEVLEE                               | 235        |  |  |
| Restless | IAF <mark>D</mark> G <mark>W</mark> TSRN-QLSLLGVNCFFVD-QLWRHRRLLLALPAVSG-RHTGDNLANEVADVLAE                               | 316        |  |  |
|          | .* *: :.: : . : : : : : : : : : :                                                                                        |            |  |  |
|          | 377 402 405                                                                                                              |            |  |  |
| Kat1     | YPGLNKM-IISSAA <mark>D</mark> NASSVKNACLGLTSQCPDRLLHLS <mark>C</mark> VN <mark>H</mark> SLNVVNSKLVTEPS                   | 419        |  |  |
| Hermes   | FNVEDLSSIKFV-T <mark>D</mark> RGANVVKSLANNIRIN <mark>C</mark> SS <mark>H</mark> LLSNVLENSFE                              | 279        |  |  |
| Tfo1     | YDISTVIGFFMM <mark>D</mark> NAGNNDTCIQELAKQYPAIKP-QSRLR <mark>C</mark> VG <mark>H</mark> MLNLIVKALLFGQG                  | 382        |  |  |
| Drifter  | FELVQHNKLGYFVL <mark>D</mark> NASNNDKAVEELGRKFEWHEPAARRIR <mark>C</mark> FG <mark>H</mark> VLHLVATAMLFVHD                | 295        |  |  |
| Restless | WDLG-SDRLGYMVL <mark>D</mark> NASNNDTAMVALGKEFGF-DPDERRLR <mark>C</mark> LG <mark>H</mark> VINLAVKQLIFGEA                | 374        |  |  |
|          | : : * :: * * : .                                                                                                         |            |  |  |
|          | 576                                                                                                                      |            |  |  |
| Kat1     | LEIECRRPVNRKAIKKYCTDKRLGDIDGLIPYVRTR <mark>W</mark> TYSVLCFERATLLAPCLLQLIKE                                              | 599        |  |  |
| Hermes   | LQHRLRSSLKSECPTR <mark>W</mark> NSTYTMLRSILDNWESVIQILSE                                                                  | 342        |  |  |
| Tfol     | GSIECCYTRVLVDGGIR <mark>W</mark> NSAYAMIERALKLRHAIDLFFLN                                                                 | 479        |  |  |
| Drifter  | PD-KNYPGTLDVVLDNCTR <mark>W</mark> LSQYYMIERAIKLRRYLEELVDI                                                               | 385        |  |  |
| Restless | GVLERIDPETGKKRVPLRPIADNETR <mark>W</mark> NSRHRMMVRALLLRRYLNRIVEK                                                        | 489        |  |  |
|          | ** : :.                                                                                                                  |            |  |  |
|          | 624                                                                                                                      |            |  |  |
| Katl     | GPILLLKP <mark>F</mark> QTITAFFNSP                                                                                       | 634        |  |  |
| Hermes   | AGETQRIVHINKSIIQTMVNILDG <mark>F</mark> ERIFKELQTC                                                                       | 377        |  |  |
| Tiol     | YNHIGKFYDISQDMLTPQDWVDLEHFLGILKPFKDLTKRMEGR                                                                              | 522        |  |  |
| Drifter  | TIQTNRKLARSRSKVEKSRSSLPSCLEEDNLLTDTDWEALNWFSNILAMFNFCLLRLEGD                                                             | 445        |  |  |
| Restless | AERAWERSKRKSVKPS1LDDKLSEEDWDVVEVF1QVLRP <mark>F</mark> DE1SVRLQGN                                                        | 539        |  |  |
|          | : :. :* *. ::                                                                                                            |            |  |  |
| TZ 1 1   |                                                                                                                          | 004        |  |  |
| Katl     | YEYLLLTMRDVHHKIWA-DIKNCPILSLFNHLMDSIAVSSTHIEHIFSISSIL                                                                    | 904        |  |  |
| Hermes   | FEFYRKEIVILSEDFKVMEWWNLNSKKYPKLSKLALSLLSIPASSAASERTFSLAGNI                                                               | 581        |  |  |
| TIOL     | LDEFMARA-NRADVEVEDPLEW <mark>W</mark> VCHASDYPILSKMAFDLF <b>S</b> CPAMSAEC <b>E</b> RV <b>FS</b> QTKKV                   | /48        |  |  |
| Drifter  | FERWQS'I'KQD-T'F'SKHDNPLEYWSAKRF'EYPRVAKMAIDVLSVPAMAAECERAFSSASSM                                                        | 663        |  |  |
| Restless | YERYIQTETHADDKYQERPLSW <mark>W</mark> QEHEMEYPNLCRMATDLL <mark>S</mark> IPTMSAET <mark>E</mark> RS <mark>ES</mark> SAGKM | //0        |  |  |
|          |                                                                                                                          |            |  |  |
| TZ - + 1 |                                                                                                                          |            |  |  |
| Kati     | TSKRRGRISPTSLEKRMKAKIAYMALGNYHKFDLKSTSLDQILFVRKTES                                                                       | 954        |  |  |
| nermes   |                                                                                                                          | 012<br>777 |  |  |
| TIOL     |                                                                                                                          | ///        |  |  |
| DITICEL  | ACDI DERATCWY OCWDERED CITAT DEM<br>ABLANT TOADI TAAI AL ACOMPAGE CITAT DEM                                              | 110        |  |  |
| VESCTESS | ・ * *・ ・・<br>^ * *・ ・・                                                                                                   | 002        |  |  |
|          |                                                                                                                          |            |  |  |

**Supplementary Figure 7.** Conserved residues in Kat1. Multiple sequence alignment (ClustalW) of Kat1, Tfo1, Drifter, Restless and Hermes (41-44). Because of low sequence similarity, the alignment of the Kat1 N-terminus (1-104) and part of the insertion domain (634-852) was omitted. Conserved amino acid residues are marked by asterisks (\*). Amino acids changed by site-directed mutagenesis in Kat1 are labeled in red.



**Supplementary Figure 8.** Kat1 mutant proteins are stable *in vitro*. Coomassie-stained SDS-PAGE showing recombinant GST (26 kDa), GST-Kat1 (136 kDa), GST-Kat1-C (amino acids 201-958, 113 kDa), GST-Kat1-N (amino acids 1-200, 49 kDa), and GST-Kat1 proteins with indicated amino acid substitutions (bottom panel). The molecular weight marker (MW) is indicated. Table S2 describes the plasmids used for expressing the proteins.



**Supplementary Figure 9.** (A) Kat1 mutant proteins are stable *in vivo*. Protein-blot analysis using whole cell extracts from a *MATa kat1* $\Delta$  strain (SAY1597) containing the empty vector or plasmids expressing Kat1, and Kat1 mutants. An anti-Myc antibody (9E11) was used to detect expression of Myc-tagged Kat1. The equivalent of 0.2A<sub>600</sub> units of cells were loaded in each lane. Table S3 describes the plasmids used for expressing the proteins. (B) Schematic drawing of the *MATa* and *MATa* loci with the BamHI-sites indicated and the sites of Kat1 cleavage shown (arrows). Boxes denote genes and the repetitive elements Left (L) and Right (R). The *MAT*-specific probe is also indicated.