Supplementary Information for

Anthropogenic disturbances are key to maintaining the biodiversity of

grasslands

Authors

Z.Y. Yuan^{1, 2}, F. Jiao^{1,2*}, Y.H. Li³, Robert L. Kallenbach⁴

Corresponding to ZYY: zyyuan@ms.iswc.ac.cn

The PDF includes:

Additional captions for Figures 1 to 4

Supplementary Figures 1 to 4

Additional captions for Figures 1 to 4

Figure S1

Relationships between Shannon-Wiener index and disturbance. The relationships are best described by non-linear regression (dark grey lines). Nonlinear patterns are derived by Loess smoothing (grey shade) with 95% confidence intervals.

Figure S2

Relationships between Shannon-Wiener index and disturbance. The relationships are best described by non-linear regression (dark grey lines). Nonlinear patterns are derived by Loess smoothing (grey shade) with 95% confidence intervals.

Figure S3

Relationships between annual plant biomass and disturbance. The relationships are best described by non-linear regression (dark grey lines). Nonlinear patterns are derived by Loess smoothing (grey shade) with 95% confidence intervals.

Figure S4

Relationships between unpalatable plant biomass and disturbance. The relationships are best described by non-linear regression (dark grey lines). Nonlinear patterns are derived by Loess smoothing (grey shade) with 95% confidence intervals.

Supplementary Figures 1 to 4

Figure S1

Relationships between Shannon-Wiener index and disturbance. The relationships are best described by non-linear regression (dark grey lines). Nonlinear patterns are derived by Loess smoothing (grey shade) with 95% confidence intervals.

Figure S2

Relationships between Shannon-Wiener index and disturbance. The relationships are best described by non-linear regression (dark grey lines). Nonlinear patterns are derived by Loess smoothing (grey shade) with 95% confidence intervals.

Figure S3

Relationships between annual plant biomass and disturbance. The relationships are best described by non-linear regression (dark grey lines). Nonlinear patterns are derived by Loess smoothing (grey shade) with 95% confidence intervals.

Figure S4

Relationships between unpalatable plant biomass and disturbance. The relationships are best described by non-linear regression (dark grey lines). Nonlinear patterns are derived by Loess smoothing (grey shade) with 95% confidence intervals.

