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Methods and Supplementary Information  

In this Supplementary Section we add details that could not find room in the main 

text. We placed a brief review of the theoretical background as well as the simulation. 

In addition, a few details of the NWs growth process followed by the fabrication 

process are provided, as well as more details on the conductance and noise 

measurements. 

 

S1 – Theoretical model  

Scattering theory of multiple Andreev reflections 

Following [1, 2], we here outline the calculation of the current and current noise 

through a SNS-Josephson junction in the formalism of multiple Andreev reflections. 

Where electrons in the normal part are Andreev reflected from the superconducting 

leads. The normal region contains a barrier whose transmission amplitude squared is t. 

It is assumed that the length of the normal region is much smaller than the 

superconducting coherence length, and that the Fermi energy in the normal region is 

much larger than the superconducting gap . As a simplified setup we consider a 

short one-dimensional normal metal piece connected to one-dimensional semi-infinite 

superconducting leads.  
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A voltage biased Josephson junction exhibits a phase divergence that increases 

linearly in time as 2( t ) eVt  . This poses a periodically time-dependent problem 

which may be treated using Floquet theory expanding the eigenstates of the system in 

the quasi-energies neV2 . A physical interpretation of these energies is in general 

not straightforward. However, in our specific case they are just the energies of the 

electrons/holes in the junction after multiple Andreev reflections. For instance, 

consider a voltage bias eV  and an electron injected into the junction at energy 

  from the left lead- in equilibrium with a chemical potential . After 

propagating through the junction this electron is Andreev reflected around the 

equilibrium potential of the right lead, eV , and returns as a hole with an energy

eV2 . Here, it is again Andreev reflected into an electron with energy eV2 . 

This process repeats until the particle has gained enough energy to overcome the 

superconducting gap and can be absorbed into the continuum of quasi-particle 

excitations in one of the leads. 

Following the picture of multiple Andreev reflections, we can set up the wave-

functions of the electronic state in the junction at the boundaries to the two leads,
1

x , 

2
x  respectively. With the quasi-energies measured with respect to the chemical 

potential of the left lead, the wave-function for a quasi-particle incident on the 

junction from the left lead is  
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Where we chose a spinor in the basis  †c ,c
   normalized to flux. The quasi-particle 

enters the junctions as an electron with probability    
2

1J a    , with the 

Andreev reflection amplitude    2 2a i /       if     and 

    2 2a sgn /        if    . 
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The tunneling barrier in the normal part of the junction with transmission 1t   is 

implemented by a scattering matrix connecting the amplitudes of the left and the right 

side in a recursive fashion 

2 0 2

2 1 1 2 1
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n n n n, n n n*

n n n n n n
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2

d t . 

The current       
2

†

x

ie
Î t t t h.c.

m
 




      may be evaluated at, say, the left 

boundary using the fact that each lead individually is in equilibrium. The electronic 

states are constructed from the Bogoliubov quasiparticle operators ̂  in the 

superconducting lead as       *

, ,
ˆ ˆt u t sgn u t       



     . We are using a joint 

index i,    to indicate the origin and energy of the incident electron ( i l ,r  for the 

left and right lead). The wave-function    u t / t   is the respective electron/hole 

amplitudes obtained from solving the recursive relations denoted above.  Our main 

interest in this work is the low-frequency current-noise, which is given by the zero 

Fourier component of the time averaged, symmetrized current correlation: 

         ˆ ˆ ˆ ˆS V d I t I t I t I t           

where      ˆ ˆ ˆI t I t I t   , and the upper bar stands for time averaging (see [1, 2] 

for the explicit expressions). To comply with the experimentally measured quantity 

 exc
S V , one subtracts from  S V  the noise at zero voltage  0S V  . For the 

experimentally-relevant temperatures and voltages this contribution is negligible. 
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Details on the numerical calculations 

The solution to the recurrence relations described above is found using the method of 

continued fractions, following [3, 4]. First, the amplitudes 
n n nA ,C ,D  are eliminated 

yielding a recursive equation for the 
nB  of the general form 

1 1 1 0n n n n n n nc B d B c B       

Introducing a new variable 
1

n
n

n

B
X

B 

  for 0n   and
1

n
n

n

B
X

B 

  for 0n  , for a 

sufficiently large eVn /2max  . The physical reasoning of this ansatz is that an 

electron impinging a lead above the gap is absorbed with a probability approaching 1 

rapidly for high energies. Hence, the amplitudes of states in the junction at high 

enough energies - corresponding to 
maxn n - are negligible. Following this procedure 

one can find all coefficients 
nB  except for

0B , which is then obtained directly from 

Eq. (5) as 

 
1

0 0 1 0 1 1B c X d c X


     

 

Additional simulations 

Noise in a NIS junction: 

We here calculate the current and current noise in a junction of a normal metal (N) 

and a superconductor (S) with a tunneling barrier in the middle to model the 

insulating region (see Fig. S1). Transport through this kind of systems has been 

studied abundantly in the literature and we here adapt the formalism of Refs. [5, 6] to 

calculate the noise using the scattering matrix, particularly the reflection matrix with 

electron-hole grading 
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of excitations at energy ε (of either an electron or a hole) approaching the junction 

from the normal metal. The tunneling barrier is described by a normal scattering 

matrix for electrons 

IS
'

  
  

  
 

with the transmission 
2

t   and * *' /      assumed to be energy independent, 

and the corresponding matrix for holes is then just *

IS . The N-S interface is described 

by the Andreev-reflection amplitude  a   given by 

 
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. 

The reflection amplitudes  eer   and  her   are found from an infinite series 

expansion considering all possible paths through which an incident electron is 

reflected as an electron or as a hole respectively. Taking the distance between the 

normal barrier and the S-N interface to zero, one obtains 
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Defining    
2
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2

he heR r   , the current and current noise at zero 

temperature are then obtained by [2] 
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We calculated the ratio 2S / eI  which does not show a dip around eV    even 

though the current shows a peak from enhanced tunneling into the superconductor due 

to a singularity in the density of states. 

 

S2 - MBE Growth and sample fabrication 

MBE Growth of InAs NWs.  The high-quality InAs NWs used in this study were 

grown by the Au-assisted, vapor-liquid-solid (VLS) method, in a high purity 

molecular beam epitaxy (MBE) system [7]. The epi-ready (111)B InAs substrate, 

glued onto a lapped silicon (Si) wafer, was initially heated in an ‘introduction 

chamber’ to 180OC for water desorption, followed by degassing at 350OC and a 

subsequent oxide blow-off with no intentional arsenic overpressure (in a dedicated 

treatment chamber attached to the MBE system). A thin layer of Au (less than 1nm 

thick) was subsequently evaporated in the same chamber. Following transfer to the 

growth chamber, the substrate temperature was ramped up to ~550OC for ripening the 

Au layer into droplets with a rather uniform size and density distribution [7]. 

Lowering the growth temperature (to ~400OC), InAs growth was initiated with an 

As4/In flux ratio of ~100, with resultant InAs NWs nucleating at the Au droplets and 

growing to a length of ~4-5μm with a diameter of 50-60nm. The NWs grow along the 

<0001> direction and have a pure Wurtzite structure mostly without any stacking 

faults (as verified by TEM imaging). 

Device fabrication.  The sample was fabricated on a thermally oxidized Si/SiO2 

substrate (Si:p
+
 doped and acts as a back gate). The NWs were detached from the 

growth surface by sonication, in ethanol and a droplet, later to dry, placed on a 

substrate with pre-arranged optical marks. Native oxide was removed and surface 

passivated with an ammonium polysulphide solution (NH4)2Sx=1:5, with the NWs 

immediately transferred into an evaporation chamber. Superconducting contacts, 

5/120nm Ti/Al thick, were evaporated by electron beam evaporation. 
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S3 – Detailed measurement setup 

Figure S3 provides a detailed schematic diagram of the measurement setup. The 

experiment was performed in a dilution refrigerator, with an electron temperature of 

~25mK, (inside the dashed region). The Josephson junction is voltage biased (with 

5Ohms resistance at the Source), allowing access of all quiescent points in the I-V 

characteristic. Two electrical relays were employed, one at the input (at 300K) and 

one at the output (at 25mK); allowing switching from low frequency measurement 

(mode 1) - using the lock in technic, to a higher frequency (mode 2) - using a function 

generator and a spectrum analyzer. The actual measurements were done in mode 2, 

while measurements in mode 1 were performed in order to calibrate the higher 

frequency measurement. 

 

Mode 1 – low frequency measurement 

A calibration line allows calibrating the 5Ohms resistor after cooling. Applying DC 

voltage plus an AC signal and measuring the two-terminal AC current, allows 

calculating the static and dynamic conductance. The current was amplified by an 

external current amplifier [8], with 10
7
V/A conversion factor, followed by a DMM or 

a lock-in amplifier. The measured differential conductance was used to calibrate the 

higher frequency measurements. 

 

Mode 2 – higher frequency measurement 

While at DC the Drain is shorted through the coil L, the 600 kHz signal is divided 

between the junction resistance and RL. The external voltage amplifier, SA-220F5, has 

a gain of 200, while the home-made ‘cold’ voltage preamplifier has a gain ~5. Noise 

measurements were performed by replacing the function generator (needed for the 

conductance measurements) with a DC source, and increasing the bandwidth of the 

spectrum analyzer. In our setup we also have two kinds of low pass filters, LPF1 and 

LPF2 which differ by their cut-off frequency. LPF1 is placed both in RT and in base-

temperature has a cutoff frequency of 80MHz (mini-circuit BHP-100+). LPF2 is 

placed between them, also in base temperature and has a cut-off frequency of 2MHz.  
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S4 - Estimating the background noise 

The total voltage noise per unit frequency at the input of the ‘cold’ preamplifier:  

22 2 2 2 4       exc amp amp B
VS S r i r k Tr

Hz
     

  
 ,   (S1) 

where Sexc is the excess current noise per unit frequency, iamp and amp are the 

amplifier's current and voltage noises, respectively, T is the temperature and r is the 

resistance that the amplifier ‘sees’ at the resonance frequency (with a small frequency 

window): 

sample L

sample L

sample L

R R
r R R

R R
 


  , 

here Rsample is the differential resistance of the sample and RL is the frequency 

independent load resistance. Note, that the 1/ f contribution to the noise at f0=600kHz 

is negligible. This is justified both from our measurements at high magnetic field as 

explained in S6 as well as from previous noise measurements done in our system to 

accurately extract integer and fractional charges of excitations in various 2DEG 

systems. 

The background noise, subtracted from the total noise, is: 

22 2 2 4       BG amp amp B
VS i r k Tr

Hz
    

  
 .   (S2) 

Since the differential resistance is strongly dependent on biasing voltage VSD, we first 

describe the procedure of determining the background noise. Since this noise 

(measured at zero bias) is laden with an emerging large Josephson current, it is 

quenched by applying a magnetic field stronger than Bc (B~200mT), where the 

superconductivity is quenched. The differential conductance and the background 

noise were then measured as a function of the back-gate voltage, and thus as function 

of r, in the relevant range (Fig. S4). The values of the amplifier’s noises obtained by 

fitting are in good agreements with the values we measure using other calibration 

methods. The electron temperature agrees well with that measured by other shot noise 

measurements. 
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S5 – The critical magnetic field 

In order to find the critical magnetic field, MAR conductance peaks are measured as a 

function of the magnetic field, with the spacing between the peaks directly 

proportional to the diminishing superconducting gap with magnetic field (Fig. S5). 

 

S6 – Number of conducting channels in the bare NW 

Under high enough magnetic field the quantum charge passing the junction is that of 

the electron. The expression for shot noise provided in the text is that of a singly 

occupied spin-degenerate conducting channel, 

)1(2 teISexc    and    
Qg

G
t =  , (S3) 

where G is the conductance and 
Qg  is the quantum of conductance 

h

e
gQ

2

2= . 

The differential conductance and the I-VSD characteristic were measured after 

quenching superconductivity (but not lifting spin degeneracy) at the working voltage 

of the back-gate corresponding to the actual experiment (Figs. S6a and S6b). The 

noise is then measured as a function of VSD (blue curve in Fig. S6c), and the 

background noise is subtracted (red curve in Fig. S6c), and the excess noise is plotted 

in Fig. S6d. The theoretical curve, calculated using Eq. S4, plotted in a black dashed 

line, seems to agree nicely with the data. In order to test this further, we also plot the 

expected excess noise assuming two spin-degenerate channels, namely, 

   )1(2)1(2 2211 teIteISexc    (S4) 

With I1 and I2 the current carried by each of the two channels, while t1 and t2 are the 

transmission of each of the two channels. If the total current, I, splits between the two 

channels in the following way 

   II 
1

 II )1(
2

  ,  (S5) 

then,  

   
Qg

G
αt =1           

Qg

G
t )-1(2   . (S6) 
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Therefore, since we know I and G, we can plot Sexc for a given α. In Fig. S6d we plot 

Sexc for α=0.5 0.4 0.3 0.2 0.1 and 0.0. Note that α=0, being the single channel case, 

indeed fit best the data. 

This measurement also allows us to show that the 1/f noise to the total noise is 

negligible. Since the 1/f noise is proportional to 
2I , any non-negligible contribution of 

it would cause noise dependency on the current to deviate from formula S4 and to 

become non-linear. Since our measurement in Fig 6d is linear and completely 

coincides with the above formula we conclude that the 1/f noise is negligible.    

 

S7 – Nature of tunneling quasiparticles 

Three possible models are suggested to account for the single quasiparticle tunneling 

taking place in the junction. We calculated the Fano-factor (F) for the models in order 

to see which one of them can account for the measured charge at the superconducting 

gap’s edge – being smaller than e at a low transmission. In each table, we express the 

probability of an event to take place P(x) and its charge (X): 

Model 1: Quasiparticles of charge e tunneling with probability t.  
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0 (1-t) 

e t 
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Model 2: Quasiparticles of charge e* tunneling with probability t and collapse as an 

electron with a probability p or as a hole with probability q, with p+q=1. 
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e tp 
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 
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Model 3: Quasiparticles of charge e* tunneling as a composite particle with 

probability t. 

 x P(x) 

0 (1-t) 

e* t 

 

 

22

2
1

1

1

*

*

t* *

e t

e t t

F e t e

 

  


   
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It is important to mention that the models above are considering only single 

quasiparticle tunneling across the junction neglecting higher order MAR 

contributions. When we lower the transmission we suppress the higher order MAR 

contributions and reveal a dip in the charge. This is clearly seen in our data as well as 

in the results of the theoretical model of S1. Once we suppressed these high order 

MAR contributions we observe a Fano factor which is smaller than e, which is only 

consistent with Model 3 above. In other words, the only way to observe a Fano factor 

that is lower than e is both to suppress enough the high order MAR (going to low 

transmissions) as well as having a tunneling of quasiparticles carrying a fractional 

charge. 

 

S8 – Induced superconductivity on a single band 

 

In this section we aim to support our claim in the manuscript for having a non-BCS 

density of state and specifically a sharper one in our 1D system. 

 

Observing figure 3a in the main text it is possible to see negative differential 

conductance, this effect which is more apparent as the transmission is decreased 

originates as we will show from the change in the usual BCS density of states.  

In figure S7 (a&b) we plot a measurement of the differential conductance as a 

function of the applied bias and the I-V curve. In figure S7 (c&d) we plot the 

theoretical predicted I-V curve and differential conductance based on the BCS density 

of state assuming a uniform transmission. The negative differential resistance which is 

clearly seen in the measurement and manifested in the experimental I-V curve as a 

peak in the current is not visible in the theoretical I-V, this suggests a different 

theoretical model should be given. 

 

The origin of this discrepancy is the assumption of a linear dispersion which usually 

one considers in calculating the DOS. In a 1D wire, which has a parabolic dispersion, 

as the Fermi level is lowered to the bottom of the conduction band this assumption 
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fails. Hence, the change in the DOS is more apparent as the fermi energy gets closer 

to the ‘Van-Hove singularity’.  

 

To show this we calculated the DOS and I-V curves as a function the fermi energy 

position. Figure 8(a, d and g) are the density of state for EF=5Δ, 2Δ and Δ 

respectively. In figure 8(b, e and h) we plot each DOS when the fermi energy is 

defined as zero energy. It is already clear that as the Fermi level is pushed towards the 

bottom of the band the DOS is modified. In Fig 8(c, f and i) we calculate the I-V 

curves and show that the modified DOS gives rise to a peak in the I-V curve, similar 

to the one we showed in fig S7b.  

In conclusion, the negative differential resistance which is seen in experiment as the 

device is pinched suggests a modification from the usual BCS density of state. 

 

 

S9 – Charge partition in SIN junction 

 

In the SIS junction, the overlap between filled states of quasiparticles’ wave-function 

and empty states (above the gap) in the two superconductors allows tunneling of 

quasiparticles with fractional charge. However, in the case of SIN, in the N side there 

are quasiparticles with charge e while in the S side there are quasiparticles with a 

smaller charge. Our physical picture suggests that tunneling of electrons, being of the 

higher charge is always dominant. In one polarity, the electrons that tunnel from N to 

S breaks to multiple quasiparticles; while in the opposite polarity, quasiparticles 

bunching to an electron (in N) takes place. This is similar to the known bunching in 

the 3/1=  fractional quantum hall states where 3 quasiparticles, each with charge 

e/3, tunnel together to form an electron. 

Moreover, and in general, tunneling between two different materials, with 

different quasiparticles in each side, the current fluctuations will correspond to the 

larger charge transfer. For example, when the bias is smaller than Δ, electrons from 

the N region "bunch" to form Cooper pairs and the measured charge (via shot noise) 

is 2e (via Andreev reflection). 
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Figure Captions: 

Figure S1. The Junction is modeled by a combination of a normal barrier and a 

perfect N-S interface. The calculation is done in the limit where the distance between 

the barrier and the N-S interface is zero. 

Figure S2. SEM image of InAs NWs grown on (111)B InAs (micrograph taken at 

45º). Note the uniformity of width and length of the NWs. 

Figure S3. Measurement setup. A scanning electron micrograph of the device (scale 

bar, 200nm) connected to a detailed illustrated circuit. 

Figure S4. Background noise measurements. (a) We start by measuring the 

differential conductance, Gsample, as a function of back gate voltage, Vg. The 

differential resistance is given by Rsample=1/Gsample and is shown in (b). Then we 

calculate the resistance that the amplifier sees at its input, Rparallel, by taking Rsample in 

parallel to RL and the result is shown in (c). (d) We then measure the background 

noise as a function of back gate voltage, Vg. This is done at magnetic field of 200mT 

to avoid effects related to superconductivity, and at zero bias to avoid any Shot noise. 

Combining the results allows us to plot the background noise as a function of Gsample 

as shown in (e), or as a function of Rparallel as shown in (f). In (f) we show the fit of the 

final result to a second order polynomial from which we obtain the coefficients of Eq. 

S2.      

Figure S5.  Critical magnetic field of the Al contacts. Differential conductance as a 

function of bias and magnetic field. 

Figure S6.  Noise measurements at high magnetic field. (a) Differential 

conductance vs. bias, VSD, at magnetic field of 200mT. (b) I-V curve obtained by 

integrating the differential conductance. (c) Total voltage noise (in blue) and 

background noise (red) as a function of bias. (d) Excess current noise per unit 

frequency as s function of DC current through the device is plotted in blue. 

Theoretical lines of the expected excess noise assuming two channels carrying the 

current are plotted in dashed lines. The expected excess noise should follow 

)1(2)1(2 2211 teIteISexc  , with II 
1

 and II )1(
2

  being the currents 

carried by each channel. Lines are plotted for α=0.5 0.4 0.3 0.2 0.1 and 0.0 (red to 
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black) where the α=0 case reduces to the single channel scenario. The experimental 

data, falling on the α=0 line, leads us to conclude a single occupied channel.    

Figure S7.  I-V curve of the experiment vs. BCS theory: (a & b) Measurement of 

the differential resistance and I-V curves in very low transmission. (c & d) 

Differential resistance and I-V curves expected from BCS theory assuming a constant 

transmission in energy. 

Figure S8.  Each raw show the density of state and the I-V curve for a certain position 

of the fermi energy (5Δ, 2Δ and Δ above the minimum of the conduction band). 
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Fig. S7
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Fig. S8
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