Supplementary Figure 1. Prox1 levels are high in peripheral islet cells and low in core islet cells. A-C: Prox1 (green) was expressed in  $\varepsilon$ -cells (ghrelin<sup>+</sup>, arrows in A),  $\delta$ -cells (somatostain<sup>+</sup>, arrows in B), and PP cells (pancreatic polypeptide<sup>+</sup>, arrows in C) of pancreata of wild-type mice. D: Prox1 expression was high in peripheral islet cells (arrows) that include the small ghrelin<sup>+</sup> cell population (green) and low in core islet cells (arrowhead) in pancreata of wild-type mice. D', Prox1 expression (red) was high in most islet cells in pancreata of *Pax4*-null mice. (Note that ghrelin<sup>+</sup> cells [green] are overabundant in islets of *Pax4* mutant mice [44].) Scale bars: 12.5 µm (A-C) or 25 µm (D, D').



Supplementary Figure 2.  $\beta$ -gal expression is different in neonatal and adult insulin<sup>+</sup> cells in the pancreas of *Prox1*<sup>betaOE</sup> mice. A, B:  $\beta$ gal expression (red and arrows) was very limited and GFP expression (green and arrowheads) was very extensive in pancreatic insulin<sup>+</sup> cells (blue) of *Prox1*<sup>endOE</sup> mice at P2 (A) and P7 (B). Notice that GFP and  $\beta$ gal immunoreactivities were mutually exclusive. C:  $\beta$ gal (red and arrow) colocalized extensively with insulin (blue) in the pancreas of *Prox1*<sup>endOE</sup> adult mice. Scale bars: 25 µm.



Supplementary Figure 3.  $\beta$ -gal is expressed in pancreatic and non-pancreatic tissues of *Prox1*<sup>endOE</sup> embryos at E14.5. A-E: E14.5 *Prox1*<sup>endOE</sup> coronal sections stained for  $\beta$ gal uncovered expression of this protein (red and arrows) in numerous cells in the ventral thalamus (A), hindbrain (B) and spinal cord (C); in a few cell clusters in the developing heart (D); and in numerous cells in the pancreas (E). F,G: Prox1 (red and arrows) had similar expression to  $\beta$ gal (A,C) in the ventral thalamus and spinal cord of E14.5 *Prox1*<sup>endOE</sup> embryos. H, I: Prox1<sub>HIGH</sub> (red and yellow arrows) colocalized extensively with  $\beta$ gal (blue) in pancreata of newborn (H) and adult (I) *Prox1*<sup>endOE</sup> mice. I [inset]: The expression of  $\beta$ gal in some acini indicated that they originate from Neurog3<sup>+</sup> precursors, and these cells also expressed ectopic Prox1 (arrow). Scale bars: 25 µm (H, I) or 100 µm (A-G).



Supplementary Figure 4. Extensive Prox1 and  $\beta$ -gal immunoreactivity is detected in the islets of *Prox1<sup>endOE</sup>* adult mice. A: Prox1 overexpression decreased survival in *Prox1<sup>endOE</sup>* (HG) mice but not in *Prox1<sup>endOE</sup>* (NG) mice. B, B': Insulin (blue) and  $\beta$ -gal (red) colocalized extensively in the islets of *Prox1<sup>endOE</sup>* (HG) adult mice (B) and partially in the islets of *Prox1<sup>endOE</sup>* (NG) adult mice (B'). C, C': Cells expressing both  $\beta$ gal<sup>+</sup> (red) and high Prox1 (red) were abundant in pancreata of *Prox1<sup>endOE</sup>* (HG) mice (C) and moderate in pancreata of *Prox1<sup>endOE</sup>* (NG) mice (C'). Scale bars: 25 µm.



**Supplementary Figure 5. Prox1 misexpression in**  $\beta$ -cells changes gene expression profiles. A: Heat maps showing the 50 most upregulated transcripts (left) and the 50 most downregulated transcripts (right), in pancreata of  $Prox1^{endOE}$  mice at P15. ("C" are control [*Neurog3-cre*] triplicates and "M" are  $Prox1^{endOE}$  triplicates.) B: Top downregulated pathways identified by Gene set enrichment analysis (GSEA) in  $Prox1^{endOE}$  pancreata. C: GSEA showed that  $\beta$ -cell development and FGF signaling were amongst the top downregulated pathways in pancreata of  $Prox1^{endOE}$  mice.



**Supplementary Figure 6. Prox1 upregulation in murine** β-TC6 cells does not affect *MafA* transcript levels. A: Schematic representation of an approximately 10 kb mouse *MafA* upstream fragment containing putative Prox1-binding sites (+1 refers to the mouse *MafA* Transcription Start Site [TSS] reported by Raum et al [45]). The conserved site 12 in MafA region 3 (*Area 12*) has been reported to bind an ~80 kb activator that is different from Prox1 (46). The TGCCAAG (BS.III) Prox1-binding motif was conserved in *MafA* upstream sequences of rodents. **B:** Chromatin immunoprecipitation results showed significant enrichment of Prox1 to the predicted binding site 3 (*BS.III*) of *MafA* in the chromatin of  $\alpha$ TC-1 cells and lack of enrichment to the predicted *MafA* upstream binding sites in the chromatin of β-TC6 cells. Also, there was no significant enrichment of Prox1 in *MafA* area 12 or a distant area (-30 Kb) lacking putative Prox1-binding sites (*NS* or nonspecific). **C**: QPCR analysis of β-TC6 cells that were transduced with MSCV-GFP (control) or MSCV-Prox1 viruses and harvested 48 hours post-transduction to compare the expression of transcripts associated with β-cell function or transcripts encoding β-cell TFs. Data represent the mean (±SEM) of 3 independent experiments. (\**P*<0.05, \*\**P*<0.01.)



Supplementary Figure 7. Prox1 overexpression in  $\beta$ -cells of  $Prox1^{endOE}(NG)$  mice does not affect the expression of MafA and MafB. A: MafA (green and arrow) colocalized normally with Pdx1 (red) in core islet cells of  $Prox1^{endOE}(NG)$  adult mice. B: MafB (green and arrowhead) was expressed in peripheral islet cells and excluded from Pdx1<sup>+</sup> (red and arrow) core islet cells in pancreata of  $Prox1^{endOE}(NG)$  mice. Scale bars: 25 µm.



Supplementary Figure 8. PROX1 is broadly expressed in human EndoC- $\beta$ H1 cells. Immunodetection of PROX1 (red) and insulin (green) in cultures of human EndoC- $\beta$ H1 cells (DAPI [blue] was used to stain the cell nucleus). Scale bar: 25  $\mu$ m.



## Supplementary Table 1. Antibodies used in this study.

| Antibody               | Species    | Source                   | Dilution | Application |
|------------------------|------------|--------------------------|----------|-------------|
| Prox1                  | Goat       | R&D Systems              | 1:50     | IHC Frozen  |
| Prox1                  | Guinea Pig | Rockland                 | 1:200    | IHC Frozen  |
| Prox1                  | Rabbit     | Millipore                | 1:1,000  | IHC Frozen  |
| Prox1                  | Rabbit     | Rockland custom antibody | 1µg      | ChIP        |
| Insulin                | Guinea Pig | Dako                     | 1:250    | IHC Frozen  |
| Glucagon               | Rabbit     | Abcam                    | 1:500    | IHC Frozen  |
| Glucagon               | Guinea Pig | Linco                    | 1:500    | IHC Frozen  |
| Somatostatin           | Rabbit     | Zymed                    | 1:100    | IHC Frozen  |
| Ghrelin                | Rabbit     | Phoenix Pharmaceuticals  | 1:300    | IHC Frozen  |
| Pancreatic Polypeptide | Rabbit     | Zymed                    | 1:50     | IHC Frozen  |
| β-galactosidase        | Chicken    | Abcam                    | 1:500    | IHC Frozen  |
| β-galactosidase        | Rabbit     | ICN                      | 1:5,000  | IHC Frozen  |
| MafA                   | Rabbit     | Bethyl Labs              | 1:500    | IHC Frozen  |
| MafB                   | Rabbit     | Bethyl Labs              | 1:200    | IHC Frozen  |
| Glut-2                 | Rabbit     | Alpha Diagnostics        | 1:200    | IHC Frozen  |
| Pdx1                   | Rabbit     | Abcam                    | 1:2,000  | IHC Frozen  |
| Pdx1                   | Goat       | Chris Wright lab         | 1:1,000  | IHC Frozen  |
| Ki-67                  | Rabbit     | Neomarkers               | 1:500    | IHC Frozen  |
| Synaptophysin          | Rabbit     | Zymed                    | 1:1,000  | IHC Frozen  |
| E-Cadherin             | Rat        | Sigma                    | 1:1,000  | IHC Frozen  |

| Gene         | Forward primer              | Reverse primer        |  |
|--------------|-----------------------------|-----------------------|--|
| Prox1        | CGCAGAAGGACTCTCTTTGTC       | GATTGGGTGATAGCCCTTCAT |  |
| Actb         | CTAAGGCCAACCGTGAAAAG        | ACCAGAGGCATACAGGGACA  |  |
| bgal         | GCGTGGATGAAGACCAGC          | CGAAGCCGCCCTGTAAAC    |  |
| Ins1         | CAGAGAGGAGGTACTTTGGACTATAAA | GCCATGTTGAAACAATGACCT |  |
| Ins2         | GAAGTGGAGGACCCACAAGTG       | CTGAAGGTCCCCGGGGCT    |  |
| Gcg          | CACGCCCTTCAAGACACAG         | GTCCTCATGCGCTTCTGC    |  |
| MafA         | CTCCAGAGCCAGGTGGAG          | GTACAGGTCCCGCTCCTTG   |  |
| MafB         | TGAAAGCCCAGTGTTCTGC         | AGGGCTACCGGATGAGAAAC  |  |
| Slc30a8      | GCTGCTTCAGCAATATGCTTC       | CAGACTCCCAGCAACGTGT   |  |
| Slc2a2/Glut2 | GGGCCATCAACATGATCTTC        | AATCATCCCGGTTAGGAACA  |  |
| <i>G6pc2</i> | TGCCCTAAGCTACACCATCA        | AAAGGACCAGGTCAGTCTGTG |  |
| Pdx1         | GAAATCCACCAAAGCTCACG        | CGGGTTCCGCTGTGTAAG    |  |
| Neurod1      | CGCAGAAGGCAAGGTGTC          | TTTGGTCATGTTTCCACTTCC |  |
| Nkx6-1       | CTGCACAGTATGGCCGAGATG       | CCGGGTTATGTGAGCCCAA   |  |
| Nkx2-2       | GAGTCACCGGACAATGACAAG       | TAGGTCTGCGCTTTGGAGAAG |  |
| Hnf4a        | CTACGGAGCCTCGAGCTGT         | CCACACATTGTCGGCTAAAC  |  |
| Hnfla        | CGCCTCCACCCTGGTTAT          | ACTCCCCATGCTGTTGATG   |  |
| Rbp4         | AAGGGACGAGTCCGTCTTCT        | TGAAAGTGCCCACCATGTC   |  |
| UCN3         | CCAGAGCAAAGTCCACTTACAG      | GCTTGTCCTTGGACCTCCT   |  |
| Mnx1         | GAACACCAGTTCAAGCTCAACA      | GCTGCGTTTCCATTTCATTCG |  |
| UCN3         | CCAGAGCAAAGTCCACTTACAG      | GCTTGTCCTTGGACCTCCT   |  |
| Rbp4         | AAGGGACGAGTCCGTCTTCT        | TGAAAGTGCCCACCATGTC   |  |
| Dnmt3a       | ATTCCTTCTCACAACCCGC         | TACTTCCAGAGCTTCAGGGC  |  |
| CyclinD1     | GCGTACCCTGACACCAATCTC       | CTCCTCTTCGCACTTCTGCTC |  |
| FRS2         | AGCTGTCCAGATAAAGACACTGT     | ATTTTACCGAGTCCCGTTTCC |  |
| Fgf2         | GCGACCCACACGTCAAACTA        | CCGTCCATCTTCCTTCATAGC |  |
| Fgf4         | TGGGCCTCAAAAGGCTTCG         | CGTCGGTAAAGAAAGGCACAC |  |
| Fgf7         | TGGGCACTATATCTCTAGCTTGC     | GGGTGCGACAGAACAGTCT   |  |
| MafA-BSIII   | ACTCTGCCAAGCAGTCCCTA        | AGGGTGATCCCTGAAAGCAG  |  |
| MafA-Area12  | TTGCGACCATACGGCTATCA        | TGCTCAGTGGGGGCTGTTAGA |  |
| MafA-NS      | TATCTGTGGCCACCCTGAGA        | CAACAAACAAGGAGCCTCGC  |  |

## Supplementary Table 2. Mouse Primers used for qPCR and ChIP experiments.

| Human Primers used for qPCR in EndoC-βH1 cells |  |
|------------------------------------------------|--|
|------------------------------------------------|--|

| Gene    | Forward primer             | Reverse primer             |
|---------|----------------------------|----------------------------|
| Prox1   | CTTCACTATCCAGCTTGCAG       | CTACATTCAGATGGAGAAGTACG    |
| MafA    | TGAGCGGAGAACGGTGATTTCTAAGG | GGAACGGAGAACCACGTTCAACGTA  |
| Slc30a8 | GATCCAGGCGACTGTGATGAT      | TGGCTTGTACTTCCTTGTGATTG    |
| G6pc2   | GCAGGGCTTTATGGGCTATT       | AGTTCATTTCCTCCAAGGTCAG     |
| NeuroD  | ATTGCACCAGCCCTTCCTTTGATC   | TCGCTGCAGGATAGTGCATGGTAA   |
| Glut1   | GGACAGGCTCAAAGAGGTTAT      | AGGAGGTGGGTGGAGTTAAT       |
| Glut2   | CTAGTTGGGAGTCCTGTCAATTC    | CTAGGCAGAGCTGCGAATAAA      |
| MafB    | ACCTTGGCTAAGGCGAGAGTAG     | CTTCAGCCTGGAGAGAAGTTACTC   |
| Ins     | AGAGGCCATCAAGCAGATCACTGT   | AGGTGTTGGTTCACAAAGGCTG     |
| Hnf4a   | CCCATCAGAAGGCACCAACC       | AGCGGCACTGGTTCCTCTTG       |
| Hnf1a   | GAGCAAGAGGCACTGATCC        | CTCCAGCTCTTTGAGGATGG       |
| Nkx6-1  | ATTCGTTGGGGATGACAGAG       | CGAGTCCTGCTTCTTCTTGG       |
| Mnx1    | AGAAGGCGGAAACCCACAGTGTT    | CAGCAGTTTGAACGCTCGTGACA    |
| HK1     | GCTCTCCGATGAAACTCTCATAG    | GGACCTTACGAATGTTGGCAA      |
| Aldo B  | CAAGGCTGCAAACAAGGAG        | CCCGTGTGAACATACTGTCCT      |
| GP1     | CCAATGGCCAGCATGCTTTT       | CCTCTGTCTGGGCCAAGAAG       |
| TPI1    | ACTGCCTATATCGACTTCGCC      | AAGCCCCATTAGTCACTTTGTAG    |
| Dnmt3a  | ATTCCTTCTCACAACCCGC        | TACTTCCAGAGCTTCAGGGC       |
| LDHa    | GGAGATCCATCATCTCTCCC       | GGCCTGTGCCATCAGTATCT       |
| UCN3    | AGATACGTGTCCCAAGCACA       | TTCTTCCTCCCAATTTGCGC       |
| GCK     | CCTTCTTCAGGTCCTCCTCC       | GATGGATCTCACAAGGAGCC       |
| FGF7    | AAAGGCTCACACACACACAC       | TCCATGTCTGTTGTCTGCCT       |
| FRS2    | TCCAGGATTTGCTGCTCAGA       | TTTCCGCTCTTCTTGCACAC       |
| FGF4    | GTTTCCCCTATGTGCAAGTCC      | GCGCTGCTGCGGTCCATGT        |
| CCND1   | GCACAGCTGTAGTGGGGGTTCTAGGC | CAGGCGCAAAGGACATGCACACGGC  |
| CCND3   | GCAGCGCCTTTCCCAACT         | TCAAAAGGAATGCTGGTGTATGTATC |