Genome-wide Association Studies Identify Genetic Loci Associated with

Albuminuria in Diabetes

SUPPLEMENTAL MATERIALS

Table of Contents

SUPPLEMENTARY FIGURE 1: QQ PLOTS FOR ALL GWAS META-ANALYSES
SUPPLEMENTARY FIGURE 2: MANHATTAN PLOTS FOR ALL GWAS META-ANALYSES
SUPPLEMENTARY FIGURE 3: REGIONAL ASSOCIATION PLOTS
SUPPLEMENTARY FIGURE 4: EVALUATION OF GLOMERULOSCLEROSIS IN RAB38 KO, CONGENIC AND TRANSGENIC RATS
SUPPLEMENTARY TABLE 1: CHARACTERISTICS OF THE STUDY POPULATIONS
SUPPLEMENTARY TABLE 2: INFORMATION ABOUT STUDY DESIGN AND UACR MEASUREMENT
SUPPLEMENTARY TABLE 3: STUDY-SPECIFIC INFORMATION ABOUT GENOTYPING, IMPUTATION AND DATA MANAGEMENT AND ANALYSIS
SUPPLEMENTARY TABLE 4: SNPS ASSOCIATED WITH UACR AMONG ALL INDIVIDUALS WITH A P-VALUE OF <1E-05
SUPPLEMENTARY TABLE 5: SNPS ASSOCIATED WITH MA AMONG ALL INDIVIDUALS WITH A P-VALUE OF <1E-05
SUPPLEMENTARY TABLE 6: SNPS ASSOCIATED WITH UACR AMONG INDIVIDUALS WITHOUT DIABETES WITH A P-VALUE OF <1E-05
SUPPLEMENTARY TABLE 7: SNPS ASSOCIATED WITH UACR AMONG INDIVIDUALS WITH DIABETES WITH A P-VALUE OF <1E-05
SUPPLEMENTARY TABLE 8: DISCOVERY, REPLICATION AND COMBINED ESTIMATES FOR ALL INDEX SNPS ASSOCIATED WITH UACR IN DIABETES IN THE DISCOVERY SAMPLE AT P<1E-05
SUPPLEMENTARY TABLE 9: ASSOCIATION RESULTS FOR THE INDEX SNPS NEAR <i>RAB38/CTSC</i> AND IN <i>HS6ST1</i> IN THE DCCT/EDIC STUDY

Supplementary Figure 1: QQ plots for all GWAS meta-analyses

Quantile-quantile (QQ) plots of the GWAS meta-analysis results for (**a**) the urinary albumin-tocreatinine ratio (UACR) in the overall sample, (**b**) UACR among those with diabetes (**c**) UACR among those without diabetes, and (**d**) microalbuminuria (MA) in the overall sample. The observed p-values are plotted on the y-axis against their expected distribution under the null hypothesis of no association on the x-axis.

Results for all SNPs are shown in black, and results after removal of loci previously known to contain trait-associated variants are shown in yellow. Gray bands represent 95% confidence intervals. λ : lambda, genomic control parameter; n: sample size.

Supplementary Figure 2: Manhattan plots for all GWAS meta-analyses

Manhattan plots of the GWAS meta-analysis results for (**a**) UACR in the overall sample, (**b**) UACR among those with diabetes, (**c**) UACR among those without diabetes, and (**d**) microalbuminuria in the overall sample. SNPs are plotted on the x-axis according to their position on each chromosome with the -log10(p-value) on the y-axis. The upper solid horizontal line indicates the threshold for genome-wide significance, $5*10^{-8}$. The lower solid horizontal line for UACR among those with diabetes (**b**) represents the threshold of $1*10^{-5}$ applied to select SNPs for replication. Genomic loci previously known to contain trait-associated variants are colored in light blue, new findings in dark blue.

©2015 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db15-1313/-/DC1

Supplementary Figure 3: Regional association plots

Regional association plots are shown for all loci that contained at least one index SNP associated with the trait at $p<10^{-5}$ after correction for genomic control. Correlation with the index SNP is estimated based on the HapMap r22 CEU samples. Plots were generated using the stand-alone version of LocusZoom (Pruim RJ *et al.*, Bioinformatics 2010). When association in a genomic region was observed with more than one trait, the regional association plot of the trait with the lowest p-value is shown. Genetic positions refer to NCBI build 36/hg18 coordinates.

 $\label{eq:scalar} \ensuremath{\textcircled{O}}\xspace{2015} American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db15-1313/-/DC1 and the scalar and th$

©2015 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db15-1313/-/DC1

©2015 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db15-1313/-/DC1

Supplementary Figure 4: Evaluation of glomerulosclerosis in Rab38 KO, congenic and transgenic rats.

Representative images of trichrome-stained glomeruli from *Rab38* congenic, KO and transgenic animals. The glomerulosclerosis score was determined from left kidneys of 13-week-old rats (n=3 of each strain) as described previously (O'Meara CC et al. JASN, 2011). 50 to 60 40x magnified cortical glomeruli were imaged and scored, and scores were averaged for each animal. *p<0.05, **p<0.01 KO vs. transgenic, ^{##}p<0.01 KO vs. congenic. Glomerulosclerosis was analyzed using one-way ANOVA followed by Tukey's post hoc test.

Rab38 congenic

Rab38 KO

Rab38 transgenic

							UACR (mg/g)	
Study	UACR	Woman %	Ago (voors)	eGFR < 60	LITN 0/	DM 9/	(median, 25th%,	NAA 0/
Disevery scherts	sample size	women, %	Age (years)	(111/1111/1./311)	FTIN, 70	Divi, %	75(11%)	IVIA, 70
Disovery conorts			77.0 (1.0)					
30	1072	63.6	//.8 (4.8)	19.9	/4.4	12.3	5.3 (2.6, 10.7)	11.7
Advance	2203	32.8	66.7 (6.76)	14.7	47.6	100	15.6 (6.44, 54.8)	45
AGES	3196	58	76.4 (5.46)	24.2	80.6	11.5	2.66 (1.2, 7.0)	11.9
Amish**	727	48.9	49.5 (16.9)	3.1	18.9	1.7	7 (4.3, 13.5)	NA
ARIC	7243	53.1	61.8 (6.1)	8.7	40.7	14.2	5.3 (3.0, 9.5)	9.4
BLSA**	361	46.1	70.4 (15.2)	17.4	21.9	7.7	7 (4.4, 11.0)	NA
СНЅ	1865	61.3	71.9 (5.0)	9.5	51.4	11	9.3 (5.3, 19.9)	23
COLAUS	5311	53.2	53.4 (10.8)	3.8	36.1	9.6	5.1 (3.4, 9.1)	9.5
CROATIA-SPLIT**	472	59.8	49.3 (14.65)	5	39.4	5	2.5 (1.3, 5.8)	7.8
EPIC	2371	53.3	59.2 (9.00)	29.87	49.3	3	3.6 (1.5, 8.3)	8.1
Fenland**	1398	56.2	44.9 (7.3)	0.9	18.9	1.4	4.5 (3.2, 7.1)	5.5
FHS	6523	54.3	51.2 (14.0)	10.7	57.5	9.7	4.58 (2.62, 9.89)	9.69
INCIPE**	940	52.7	61.0 (11.0)	8.6	69.6	10.6	NA*	7.4
KORA-F3	1530	50.5	62.5 (10.1)	10.8	41.1	11.1	4.9 (2.1, 11.1)	12.5
KORA-F4	1804	51.3	60.9 (8.9)	7	20.9	9.2	6.1 (3.8, 11.9)	12.5
LIFELINES	8085	57.2	47.4 (11.2)	NA	31.5	2.2	3.12 (2.2, 4.7)	2.4
MESA	2511	52.3	62.67 (10.2)	9.72	38.6	5.99	4.60 (3.10, 8.50)	9.52
MICROS**	504	56.5	46.2 (16.1)	3.8	37.7	4.3	6.0 (4.0, 9.0)	5.4
PREVEND	3634	48.4	49.6 (12.5)	3.3	31.8	3.4	7.9 (5.0, 15.5)	10.2
SHIP	2655	51.7	54.5 (15.3)	7.7	51.1	11.2	8.95 (5.00, 20.59)	25.2
SHIP-TREND**	985	56.2	50.1 (13.7)	4.3	39.6	1.8	6 (3.9, 10.3)	8.5
Total	55390							

Supplementary Table 1: Characteristics of the study populations

Replication cohorts								
ESTHER	2958	55.6	61.87	15.7	57.52	15.87	9.8 (6.2, 19.7)	23.06
GANI_MED	1674	44.0	60.0	36.1	71.2	24.9	11.8 (6.1, 43.9)	37.2
GENDIAN	450	47.1	65.05	32.3	53	100	7.54 (3.57,23.65)	27.6
KORAF4 non-GWAS	1195	52.4	49.2	5.8	13.3	4	5.7 (3.5, 11.4)	23.6
KORAF3 non-GWAS	1389	52.5	51.7	2.6	29.4	5.1	4.4 (1.87, 9.6)	11
SAPHIR	1690	37.1	51.4	6.9	55.7	3.3	3.8 (2.3, 8.3)	9.9
SKIPOGH**	807	52.3	47.1	5.7	22.9	4.5	4.2 (2.7, 7.7)	5.7
Vanderbilt Omni1	472	47.3	54.5	27.7	70.5	18	11.5 (6.0, 39.0)	36.7
Vanderbilt Omni5	144	46.9	50.5	21.7	58.2	33.3	14.5 (6.0, 42.2)	35.4
Vanderbilt 660W	365	56.5	56.5	20.6	57.2	17.9	9.0 (5.0, 26.0)	30.7
Total	11144							

*Because of the lower detection limit of the assay, the INCIPE Study only contributed to analyses of MA.

**Studies that did not contribute data for analyses of MA or UACR among those with diabetes because of low case numbers.

¹Timepoint of serum creatinine measurement can differ from that of urinary albumin measurements in some of the studies.

Supplementary Table 2: Information about study design and UACR measurement

Study	Study Design	Total genotyped sample size	Study exclusions or disease enrichment, and data quality control	Urinary albumin measurements + QC	Key Study References
Discovery study					·
3C	Prospective population- based	1072	Study exclusions or disease enrichment: none. Exclusions. none.	At 4-year follow-up, urinary albumin and creatinine were measured in a fresh morning urine sample in a single laboratory using an immunoturbidimetric assay for albumin and Jaffe method for creatinine.	1. The 3C Study Group. Vascular factors and risk of dementia. Design of the Three-City Study and baseline characteristics of the study population. Neuroepidemiology. 2003; 22:316-325. 2. Lambert J-C, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B, Letenneur L, Bettens K, Berr B, Pasquier F, Fiévet N, Barberger- Gateau P, Engelborghs S, De Deyn P, Mateo I, Franck F, Helisalmi S, Porcellini E, Hanon O, the European Alzheimer's Disease Investigators, De Pancorbo MM, Lendon C, Dufouil C, Jaillard C, Leveillard T, Alvarez V, Bosco P, Mancuso M, Panza F, Nacmias B, Bossù P, Piccardi P, Annoni G, Seripa D, Galimberti D, Hannequin D, Licastro F, Soininen H, Ritchie K, Galan P, Dartigues J-F, Tzourio C, Gut I, Van Broeckhoven C, Alpérovitch A, Lathrop M, Amouyel P. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet. 2000:41:1004

Advance	Randomized controlled trial	2203	Study exclusions or disease enrichment: multicenter trial done by 215 collaborating centres in 20 countries, including 11,140 type 2 diabetes subjects all of Caucasian origin. Exclusions: 8829 with no genotype; 10 samples excluded due to sex mismatch, high sample missingness or having <0.8 of Caucasian ethnicity (STRUCTURE 2.3). Of the 2301 remaining samples of good genotype quality, 98 did not have data for UACR.	Urinary albumin and creatinine were measured in the same morning fresh sample in local certified laboratoires using local regulations in 20 countries. Units were harmonized centrally by the George Insitute. Two samples were required for the determination of the stage of albuminuria. UACR were repeated every 6 months during a 5-year follow-up.	 Ninomiya T et al. Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J Am Soc Nephrol. 2009 Aug;20(8):1813-21. Patel A et al for the ADVANCE Collaborative Group. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial). Lancet 2007; 370: 829- 40.
AGES	Population- based	3196	Study information or disease enrichment: none. Exclusions: exclusion criteria included sample failure, genotype mismatch with reference panel, and sex mismatch, resulting in clean genotype data on 3,219 individuals.	Urinary albumin was measured in a morning urine sample using the Tina-quant immunoturbimetric assay (Roche Diagnostics, Mannheim). The intra-assay CV was 7.2%. Urinary creatinine in the same samples was measured using the HiCo Creatinine Jaffe method (Roche Diagnostics, Mannheim). The intra-assay CV was 4.2%.	Harris TB, Launer LJ, Eiriksdottir G, Kjartansson O, Jonsson PV, Sigurdsson G, Thorgeirsson G, Aspelund T, Garcia ME, Cotch MF, Hoffman HJ, Gudnason V.Age, Gene/Environment Susceptibility-Reykjavik Study: multidisciplinary applied phenomics. Am J Epidemiol. 2007 May 1;165(9):1076-87.
Amish	Population- based "founder" cohort	727	Study information or disease enrichment: none. Exclusions: age < 20, severe chronic disease, call rate < 95%.	Urinary albumin concentration was measured from stored samples using a quantitative immunoturbimetric assay (Roche Diagnostics, Indianapolis), and creatinine in urine was measured using a modified Jaffe method.	 Mitchell BD et al. The genetic response to short-term interventions affecting cardiovascular function: rationale and design of the Heredity and Phenotype Intervention (HAPI) Heart Study. Am. Heart J. 155, 823-828 (2008). Rampersaud E et al. The association of coronary artery calcification and carotid artery intima-media thickness with distinct, traditional coronary artery disease risk factors in asymptomatic adults. Am. J. Epidemiol. 168, 1016-1023 (2008).

ARIC	Prospective,	7243	Study information or disease enrichment:	Using stored specimen from samples	The Atherosclerosis Risk in
	population-		none. Exclusions: of the 9713 genotyped	collected at visit 4, urinary albumin was	Communities (ARIC) Study: design and
	based		individuals of European ancestry, we	measured by a nephelometric method	objectives. The ARIC investigators. Am J
			excluded 658 individuals based on	either on the Dade Behring BN100 or on	Epidemiol. 1989 Apr;129(4):687-702.
			discrepancies with previous genotypes,	the Beckman Image	
			disagreement between reported and	Nephelometer. Urinary creatinine was	
			genotypic sex, one randomly selected	measured using the Jaffe method.	
			member of a pair of first-degree relatives,		
			or outlier based on measures of average		
			DST or more than 8 SD away on any of the		
			first 10 principal components. Additional		
			samples were excluded for this analysis		
			because of the unavailability of the		
			phenotype.		
BLSA	Population-	361	Study information or disease enrichment:	Urinary measurements were conducted	Shock NW et al. Normal Human Aging:
	based		none. Exclusions: non-European descent or	on 24-hour urine samples. Urinary	The Baltimore Study of Aging. 1984.
			with missing UACR information.	albumin was determined with	
				nephelometry (Beckman Array System).	
				Urinary creatinine was measured using a	
				Vitros enzymatic assay (Johnson &	
				Johnson Co., Rochester, NY).	
CHS	Prospective	1865	Study information or disease enrichment:	Urinary parameters were measured from	1. Fried LP, Borhani NO, Enright P,
	population-		A total of 1908 persons were excluded	a morning urine sample. The albumin	Furberg CD, Gardin JM, Kronmal RA,
	based		from the GWAS study sample due to the	was measured by rate nephelometry	Kuller LH, Manolio TA, Mittelmark MB,
			presence at study baseline of coronary	(Array	Newman A, et al. The Cardiovascular
			heart disease, congestive heart failure,	360 CE Protein Analyzer, Beckman	Health Study: design and rationale. Ann
			peripheral vascular disease, valvular heart	Instruments, Fullerton, CA). The	Epidemiol. 1991;1(3):263-276.
			disease, stroke or transient ischemic attack	creatinine was measured using a Kodak	2. Heard-Costa, NL et al. NRXN3 is a
			or lack of available DNA. Exclusions: The	Ektachem 700 Analyzer (Eastman Kodak	novel locus for waist circumference: a
			present report is based upon genotyping	company, Rochester, NY).	genome-wide association study from
			results from 3,329 CHS Caucasian		the CHARGE Consortium. 2009. Plos
			participants, who were free of clinical		Genet. 5(6): e1000539.
			cardiovascular disease at baseline,		
			consented to genetic testing, and had DNA		
			available for genotyping. Genotypes were		
			called using the Illumina BeadStudio		
			software. Genotyping was successful in		
			3,291 persons.		

COLAUS	Population- based	5311	Study exclusions or disease enrichment: none. Exclusions: samples with call rate < 90% and related individuals.	Urinary albumin was measured using a Bromocresol green assay (Roche Diagnostics, Basel, Switzerland). The inter- and intra-assay CVs were 2.5% and 0.4%. Urinary creatinine was measured using a Jaffe kinetic compensated method. The inter- and intra-assay CVs were 2.9% and 0.7%.	Firmann M, Mayor V, Vidal PM, Bochud M, Pécoud A, Hayoz D, Paccaud F, Preisig M, Song KS, Yuan X, Danoff TM, Stirnadel HA, Waterworth D, Mooser V, Waeber G, Vollenweider P. The CoLaus study: a population-based study to investigate the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome.BMC Cardiovasc Disord. 2008 Mar 17;8:6. doi: 10.1186/1471- 2261-8-6.
CROATIA-SPLIT	Population- based	472	Study exclusions or disease enrichment: none. Exclusions: missing UACR levels.	Urinary albumin excretion was measured, in stored urine samples, by an automated assay based on a turbimetric method with automatic calibration and quality control (Synchron CX System, Beckman Coulter).	"10001 Dalmatiians" Croatia launches its national biobank Rudan I, Marusić A, Janković S, Rotim K, Boban M, Lauc G, Grković I, Dogas Z, Zemunik T, Vatavuk Z, Bencić G, Rudan D, Mulić R, Krzelj V, Terzić J, Stojanović D, Puntarić D, Bilić E, Ropac D, Vorko-Jović A, Znaor A, Stevanović R, Biloglav Z, Polasek O.Croat Med J. 2009 Feb;50(1):4-6.
EPIC	Population- based	2371	Study exclusions or disease enrichment: participants taking colchicine, probenecid or allopurinol at 1st, 2nd health checks or 3rd follow-up; gout from hospital discharge ICD10 M10, between 1997-2008. Exclusions: none.	Urinary albumin was measured in spot urine by immunonephelometry using the Nephelometer II analyzer (Dade Behring, Marburg, Germany). The intra-assay CV was 2.91%. Urinary creatinine was measured by means of colorimetry using the Dimension AR Analyzer (Dade Behring Marburg, Germany).	 Day N et al. EPIC-Norfolk: study design and characteristics of the cohort. European Prospective Investigation of Cancer. Br J Cancer 80 Suppl 1, 95-103 (1999). Lee CT et al. Cross-sectional association between fish consumption and albuminuria: the European Prospective Investigation of Cancer- Norfolk Study. Am J Kidney Dis 52, 876- 86 (2008).
Fenland	Population- based	1398	Study exclusions or disease enrichment: exclusion criteria for the study were: age<30 or age>55, prevalent diabetes, pregnant and lactating women, inability to participate including terminal illness, psychotic illness, or inability to walk unaided. Exclusions: 102 exluded due to call rate < 95%, heterozygosity check (upper bound 0.2882, lower bound 0.2735), relatedness check and duplicate check.	Using stored samples, urinary albumin was measured by means of immunonephelometry using the Nephelometer II analyzer (Dade Behring, Marburg, Germany; intra-assay CV 2.91%). Urinary creatinine was measured through colorimetry using the Dimension AR Analyzer (Dade Behring Marburg, Germany).	Willer CJ, Speliotes EK, Loos RJ et al. (2009) Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet, 41(1): 25-34.

FHS	Prospective family-based	6523	Study exclusions or disease enrichment: none. Exclusions: Of the 9,274 participants who underwent genotyping, we made the following exclusions: sample call rate <97% (n=666), genotype heterozygosity > 5 standard deviations, and ambiguous family data (n=127). This resulted in a total of 8,481 genotyped individuals. Of them, 1958 did not have the phenotype available.	Urinary albumin was measured from stored samples using a Tina-quant immunoturbimetric assay (Roche Diagnostics, Indianapolis, Indiana). The intra-assay CV was 7.2% for the Offspring cohort and 2.1% for the Third Generation. Urinary creatinine was measured using a modified Jaffe method. Its intra-assay CV was 2.3% for the Offspring cohort and 1.0% for the Third Generation cohort.	 Feinleib M, Kannel WB, Garrison RJ, McNamara PM, Castelli WP. The Framingham Offspring Study. Design and preliminary data. Prev Med. 1975;4:518-525. Kannel WB, Feinleib M, McNamara PM, Garrison RJ, Castelli WP. An investigation of coronary heart disease in families. The Framingham offspring study. Am J Epidemiol. 1979;110:281- 290. Splansky GL, Corey D, Yang Q, Atwood LD, Cupples LA, Benjamin EJ, D'Agostino RB, Sr., Fox CS, Larson MG, Murabito JM, O'Donnell CJ, Vasan RS, Wolf PA, Levy D. The Third Generation Cohort of the National Heart, Lung, and Blood Institute's Framingham Heart Study: design, recruitment, and initial examination. Am J Epidemiol. 2007;165:1328-1335.
INCIPE	Cross- sectional, population based	940	Study exclusions or disease enrichment: individuals <40 year old. Exclusions: pregnant women	Using stored specimen, urinary albumin was measured by a nephelometric method. Urinary creatinine was measured using the Jaffé method.	Gambaro, G. et al. Prevalence of CKD in northeastern Italy: results of the INCIPE study and comparison with NHANES. Clin. J. Am. Soc. Nephrol. 5, 1946-1953 (2010).
KORA-F3	Prospective population- based	1530	Study exclusions or disease enrichment: none. Exclusions: none.	Using stored urine samples, urinary albumin concentration was measured with a latex enhanced nephelometric assay (Siemens Healthcare Diagnostics) on a Dade Behring BN2 apparatus. Urinary creatinine concentration was measured using an enzymatic method.	 Baumeister SE, Böger CA, Krämer BK, Doring A, Eheberg D, Fischer B, John J, Koenig W & Meisinger C: Effect of chronic kidney disease and comorbid conditions on health care costs: A 10- year observational study in a general population. Am J Nephrol 31: 222-229, 2010. Wichmann HE, Gieger C & Illig T: KORA-genresource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen 67 Suppl 1: S26-30, 2005.

KORA-F4	Prospective population- based	1804	Study exclusions or disease enrichment: none. Exclusions: none.	Using stored urine samples, urinary albumin concentration was measured with a latex enhanced nephelometric assay (Siemens Healthcare Diagnostics) on a Dade Behring BN2 apparatus. Urinary creatinine concentration was measured using a kinetic Jaffe method in KORA F4.	1. Baumeister SE, Böger CA, Krämer BK, Doring A, Eheberg D, Fischer B, John J, Koenig W & Meisinger C: Effect of chronic kidney disease and comorbid conditions on health care costs: A 10- year observational study in a general population. Am J Nephrol 31: 222-229. 2. Wichmann HE, Gieger C & Illig T: KORA-genresource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen 67 Suppl 1: S26-30, 2005.
LIFELINES	3-generations, population- based	8085	Study exclusions or disease enrichment: living outside the 3 Northern provinces of The Netherlands. Exclusions: none.	Urinary albumin and creatinine were measured using the Roche Modular.	Stolk RP, Rosmalen JGM, Postma DS, de Boer RA, Navis G, Slaets JPJ, Ormel J, and Wolffenbuttel BHR. Universal risk factors for multifactorial diseases: LifeLines: a three-generation population-based study. Eur. J. Epidemiol., vol. 23, no. 1, pp. 67–74, Jan. 2008.
MESA	Community- based cohort study	2511	Study exclusions or disease enrichment: none. Exclusions: none.	Urine albumin and creatinine were measured at the Clinical Chemistry Laboratory at Fletcher Allen Health Care (Burlington, Vt). Urine albumin and creatinine were measured by nephelometry and the rate Jaffe reaction, respectively.	Bild DE et al. Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol 156, 871-81 (2002).

MICROS	Cross-	504	Study exclusions or disease enrichment:	The urinary albumin-to-creatining ratio	1 Pattaro C Marroni E Riegler A
Whenes	sectional	504	<18 years of age Exclusions: samples with	was measured on a point-of-care	Mascalzoni D. Dichler I. Volnato CB. Dal
	nonulation		\sim 10 years of age. Exclusions . samples with	dishetes management platform (Payer	Coro II. Do Grandi A. Eggor C. Eisondio
	population-		of beterozygosity, or being classified as	DCA 2000 (applyzor)	A Euchcharger C Cägole M Dedrotti S
	based study		of field of years and the second of the seco	DCA 2000+ analyzer).	A, Fuchsberger C, Gogele M, Peurotti S,
	using		outliers by IBS clustering analysis were		Mindermann CL Maitingan T
	extended		excluded prior to further analyses.		wiedermann CJ, Meitinger T,
	pedigrees				Pramstaller PP. The genetic study of
					three population microisolates in South
					Tyrol (MICROS): study design and
					epidemiological perspectives. BMC
					Med Genet. 2007;8:29.
					2. Marroni F, Grazio D, Pattaro C,
					Devoto M, Pramstaller P. Estimates of
					genetic and environmental
					contribution to 43 quantitative traits
					support sharing of a homogeneous
					environment in an isolated population
					from South Tyrol, Italy. Hum Hered.
					2008:65(3):175-82.
PREVEND	Population-	3634	Study exclusions or disease enrichment:	Urinary albumin was determined from	Hillege HL, Fidler V, Diercks GFH, van
	based		aged between 28-75 vrs. enriched for	fresh urine samples by nephelometry	Gilst WH. de Zeeuw D. van Veldhuisen
			microalbuminuria. Exclusions : none.	(BNII: Dade Behring Diagnostic, Marburg,	DL Gans ROB, Janssen WMT, Grobbee
				Germany). Intra- and inter-assay	DE, and de Jong PE. Urinary albumin
				coefficients of variation were 2.2 and	excretion predicts cardiovascular and
				2.6% respectively	noncardiovascular mortality in general
				2.0,0, respectively.	nonulation Circulation vol 106 no
					14 pp 1777–82 Oct 2002
снір	Prospective	2655	Study exclusions or disease enrichment:	Urinary albumin was measured from	1 John II et al. Study of Health in
JIII	nonulation-	2033	none Exclusions of disease emicimient.	spot first morning void urine by	Pomerania (SHIP) A health
	population-		duplicate camples (by IBS estimation)	spot first morning void drifte by	evamination in an east Corman region:
	Daseu		individuals with reported (genetyped	Diagnostica Marburg Cormonul Intro	examination in an east German region.
			individuals with reported / genotyped	Diagnostica, Marburg, Germany). Intra-	Dijectives and design. Soz
			gender mismatch.	assay and interassay coefficients of	Praventivmed 46:186-194, 2001.
				variation were 4.3% and 4.4%,	2. Volzke H et al. Conort Profile: The
				respectively. Urinary creatinine	Study of Health in Pomerania. Int J
				concentration was measured using	Epidemiol, vol. 40, no. 2, pp. 294–307,
				Kodak Ektachem dry chemistry (Eastman	Apr. 2011.
				Kodak, Rochester, NY). Intra-assay and	
				interassay coefficients of variation were	
				0.9% and 2.9%, respectively.	

SHIP-TREND	Prospective population- based	985	Study exclusions or disease enrichment: this analysis concerns the subset of 988 individuals with genotype information. Exclusions: sample call rate < 94%, duplicate samples (by IBS estimation), individuals with reported/genotyped gender mismatch.	In a sample of spot urine, both the urinary albumin (intra-assay CV 4.5-7.6% for 1.0-24.5 mg/dl) and creatinine (Jaffe method, intra-assay CV 1.4-2.1% for 5.7- 14.6 mmol/l) were measured on a Siemens Dimension Vista 1500 analyzer (Siemens Healthcare Diagnostics, Marburg, Germany), respectively.	 John U et al. Study of Health in Pomerania (SHIP). A health examination in an east German region: objectives and design. Soz Praventivmed 46:186-194, 2001. Völzke H et al. Cohort Profile: The Study of Health in Pomerania. Int J Epidemiol, vol. 40, no. 2, pp. 294–307, Apr. 2011.
Replication study		1	1	1	1
ESTHER	Prospective study	2958	Study exclusions or disease enrichment: study participants were required to be ≥50 year old and having a good knowledge of the German language. Exclusions: samples with insufficient amount of DNA for genotyping.	Urinary albumin concentration was measured using nephelometric method (Siemens. Marburg, Germany). The urinary creatinine levels were photometrically measured using the modified kinetic Jaffe method (Greiner Diagnostic GmbH. Bahlingen, Germany).	 Raum E, Rothenbacher D, Low M, Stegmaier C, Ziegler H, Brenner H. Changes of cardiovascular risk factors and their implications in subsequent birth cohorts of older adults in Germany: a life course approach. Eur J Cardiovasc Prev Rehabil 2007;14:809- 814. Schottker B, Haug U, Schomburg L, et al. Strong associations of 25- hydroxyvitamin D concentrations with all-cause, cardiovascular, cancer, and respiratory disease mortality in a large cohort study. Am J Clin Nutr 2013. Weck MN, Stegmaier C, Rothenbacher D et al. Epidemiology of chronic atrophic gastritis: population- based study among 9444 older adults from Germany. Aliment Pharmacol Ther. 2007;26:879-887.
GANI_MED	Cohort study	1674	Study exclusions or disease enrichment: six main cohorts: heart failure, stroke, periodontal disease, renal insufficiency, metabolic syndrome, and fatty liver disease. Exclusions: sample call rate < 94%, heterozygosity rate > 6SD (MAF > 1%), PCA outliers (EV 1-4 > 8SD), duplicate samples (by IBS estimation), individuals with reported/genotyped gender mismatch	In a sample of spot urine, the urinary albumin was measured on a Siemens Dimension Vista 1500 analyzer (Siemens Healthcare Diagnostics, Marburg, Germany). Urinary creatinine was measured either by an enzymatic or Jaffe method, whereas the analyses were adjusted accordingly for the method used.	Grabe HJ, Assel H, Bahls T et al. Cohort profile: Greifswald approach to individualized medicine (GANI_MED). J. Transl. Med. 2014; 12: 144.

GENDIAN	Cohort study	450	Study exclusions or disease enrichment: study on type 2 diabetes patients. Exclusions: of the 1,026 subjects undergoing genotyping, 53 were excluded due to call-rate < 95% (n=22), relatedness and duplicates (n=11), gender mismatch (n=16), ethnicity check (n=4); in addition, we excluded the following patients for the current analysis of cross-sectional UACR: patients with end-stage renal disease (n=438) or advanced, histologically proven diabetic nephropathy (n=84) or missing phenotype (n=1).	Urinary creatinine was measured using an enzymatic assay, urinary albumin was measured using the Roche Tina Quant assay.	 Böger CA et al: effect of ACE and AT- 2 inhibitors on mortality and progression to microalbuminuria in a nested case control study of diabetic nephropathy in diabetes mellitus type 2: results from the GENDIAN study. Int J Clin Pharmacol Ther 2006;44:364-74. Böger CA et al. Association of eGFR- related loci identified by GWAS with incident CKD and ESRD. Plos Genet 2011;7:e1002292.
KORAF4 non-GWAS	Prospective population- based	1195	Study exclusions or disease enrichment: none. Exclusions: none.	Using stored urine samples, urinary albumin concentration was measured with a latex enhanced nephelometric assay (Siemens Healthcare Diagnostics) on a Dade Behring BN2 apparatus. Urinary creatinine concentration was measured using an enzymatic method.	 Baumeister SE, Böger CA, Krämer BK, Doring A, Eheberg D, Fischer B, John J, Koenig W & Meisinger C: Effect of chronic kidney disease and comorbid conditions on health care costs: A 10- year observational study in a general population. Am J Nephrol 31: 222-229, 2010. Wichmann HE, Gieger C & Illig T: KORA-genresource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen 67 Suppl 1: S26-30, 2005.
KORAF3 non-GWAS	Prospective population- based	1389	Study exclusions or disease enrichment: none. Exclusions: none.	Using stored urine samples, urinary albumin concentration was measured with a latex enhanced nephelometric assay (Siemens Healthcare Diagnostics) on a Dade Behring BN2 apparatus. Urinary creatinine concentration was measured using a kinetic Jaffe method in KORA F4.	 Baumeister SE, Böger CA, Krämer BK, Doring A, Eheberg D, Fischer B, John J, Koenig W & Meisinger C: Effect of chronic kidney disease and comorbid conditions on health care costs: A 10- year observational study in a general population. Am J Nephrol 31: 222-229, 2010. Wichmann HE, Gieger C & Illig T: KORA-genresource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen 67 Suppl 1: S26-30, 2005.

SAPHIR	Healthy working population	1690	Study exclusions or disease enrichment: none. Exclusions: none.	Urinary creatinine was measured using a modified kinetic Jaffe reaction (CREA, Roche Diagnostics GmbH, Mannheim, Germany). Urinary albumin concentration was determined using the Tinaquant assay (Roche Diagnostics GmbH, Mannheim, Germany).	 Heid IM, Wagner SA, Gohlke H, Iglseder B, Mueller JC, Cip P, Ladurner G, Reiter R, Stadlmayr A, Mackevics V, Illig T, Kronenberg F, Paulweber B: Genetic architecture of the APM1 gene and its influence on adiponectin plasma levels and parameters of the metabolic syndrome in 1,727 healthy Caucasians. Diabetes 55:375-384, 2006. Kollerits B, Coassin S, Kiechl S, Hunt
					SC, Paulweber B, Willeit J, Brandstätter A, Lamina C, Adams TD, Kronenberg F: A common variant in the adiponutrin gene influences liver enzyme levels. Journal of Medical Genetics 47:116- 119, 2010.
SKIPOGH	Cross- sectional family-based population- based	807	Study exclusions or disease enrichment: none. Exclusions: of the 941 participants who underwent genotyping, we excluded 71 participants with call rate < 90%, resulting in a total of 870 genotyped individuals.	Urinary creatinine was measured using an IDMS-traceable Jaffe kinetic compensated method. Urinary albumin concentration was measured using a quantitative immuno-nephelometry.	Pruijm M, Ponte B, Ackermann D, Vuistiner P, Paccaud F, Guessous I, Ehret G, Eisenberger U, Mohaupt M, Burnier M, Martin PY, Bochud M. Eur Radiol. 2013 May 28. [Epub ahead of print].
Vanderbilt Omni1	Practice-based cohort	472	Study exclusions or disease enrichment: samples chosen based on being a case or control for one of 31 pharmacogenetic analyses. Exclusions: individuals of non- white ancestry in the electronic medical record. Also excluded any lab measurements of individuals after initiation of dialysis or a kidney transplant.	The urinary albumin concentration was measured using turbidimetric immunoassay with endpoint determination. Urinary creatinine levels were measured using the modified Jaffé method.	
Vanderbilt Omni5	Practice-based cohort	144	Study exclusions or disease enrichment: samples chosen based on being a case or control for one of 31 pharmacogenetic analyses. Exclusions: individuals of non- white ancestry in the electronic medical record. Also excluded any lab measurements of individuals after initiation of dialysis or a kidney transplant.	The urinary albumin concentration was measured using turbidimetric immunoassay with endpoint determination. Urinary creatinine levels were measured using the modified Jaffé method.	

Vanderbilt 660W	Practice-based	365	Study exclusions or disease enrichment:	The urinary albumin concentration was	Denny JC, Ritchie MD, Crawford DC.
	cohort		samples chosen for normal cardiac	measured using turbidimetric	Schildcrout JS, Ramirez AH, Pullev JM,
			conduction, meaning that at some point in	immunoassay with endpoint	Basford MA, Masys DR, Haines JL,
			time they had a normal electrocardiogram	determination. Urinary creatinine levels	Roden DM. Identification of genomic
			without the presence of heart disease,	were measured using the modified Jaffé	predictors of atrioventricular
			arrhythmias, or electrocardiographically-	method.	conduction: Using electronic medical
			active medications. Exclusions: children		records as a tool for genome science.
			(age <18) and individuals of non-white		Circulation 2010;122(20):2016-21.
			ancestry in the electronic medical record.		
			Also excluded any lab measurements from		
			individuals after initiation of dialysis or a		
			kidney transplant. At some point in their		
			electronic medical record, the patients		
			were absent of heart disease, but could		
			later develop it.		
Clinical characteriza	tion study				
DCCT/EDIC	Trial of	1304	Study exclusions or disease enrichment:	The urinary albumin concentration was	1. The Diabetes Control and
	patients with		individuals with insulin-dependent type I	measured from times urine samples	Complications (DCCT) Research Group.
	type I diabetes		diabetes mellitus between 1 and 15 years	using a solid-phase fluoroimmunoassay.	Effect of intensive therapy on the
			of duration, age 13-39 years at enrolment,	Urinary creatinine levels were measured	development and progression of
			free of advanced diabetes-related	using the Jaffé method.	diabetic nephropathy in the Diabetes
			complications, absence of several		Control and Complications Trial. Kidney
			comorbidities. Exclusions: Subjects		Int 1995;47(6):1703–20.
			meeting the criteria for persistent		2. de Boer IH et al. Long-term renal
			microalbuminuria at DCCT baseline and		outcomes of patients with type 1
			DCCT year 1 (n = 60) were excluded from		diabetes mellitus and
			the analyses of the time to incident		microalbuminuria: an analysis of the
			albuminuria. Analyses were restricted to		Diabetes Control and Complications
			individuals of European ancestry.		Trial/Epidemiology of Diabetes
					Interventions and Complications
	1				cohort Arch Intern Med 2011 Mar
					conort. Arch intern Med. 2011 Mai

Supplementary	Table 3: Study-specific	information about	genotyping, i	imputation and	data management a	and analysis
			0 / - 0/			

Study Name	Genotyping Array type	Genotype calling algorithm	QC filters for genotyped SNPs used for imputation (listed are criteria for exclusion)	No of SNPs used for imputation	Imputation software, version	Imputation Backbone (NCBI build)	Filtering of imputed genotypes	Data management and statistical analysis
3C	Illumina Human610-Quad	BeadStudio	call rate < 98%, pHWE < 10E-6, MAF < 1%	492,897	МАСН	1000 Genomes EUR, Dec 2010 (Build 37)	none	R and ProbABEL
Advance	Affymetrix 5.0 Affymetrix 6.0	Affymetrix	SNPs genotyped on Affymetrix 5.0: call rate < 96% (<99% if MAF < 5%); SNPs genotyped on Affymetrix 6.0: call rate < 97% (<99% if MAF < 5%)	876,688	IMPUTE2 2.1.2	1000 Genomes CEU Pilot, Jun 2010 plus HapMap 3 rel. 2 all available haplotypes, Feb 2009 (build 36)	imputation info < 0.5	SNPTEST
AGES	Illumina Hu370CNV	Illumina	call rate < 97%, pHWE < 1e-6, MAF < 0.01, mishap p < 1e-9, SNPs not in Hapmap or strandedness issues merging with Hapmap	329,804	MACH 1.0.16	HapMap rel. 22 (build 36)	none	R,ProbABEL, Linear and Logistic Regression
Amish	Affymetrix 500K	BRLMM	call rate < 95%, pHWE < 10E-6, MAF < 1%, non-HapMap	338,598	MACH 1.0.15	HapMap rel. 22 phased CEU haplotypes (build 36)	none	Measured genotype accounting for polygenic component
ARIC	Affymetrix 6.0	Birdseed	call rate < 95%, pHWE < 10E-5, MAF < 1%	669,450	MACH 1.0.16	HapMap rel. 22 (build 36)	none	ProbABEL, PLINK, R
BLSA	Illumina Infinium HumanHap 550K	Beadstudio	call rate < 99%, pHWE < 10E-4, MAF < 1%	501,764	MACH 1.0.15	HapMap rel. 21 phased CEU haplotypes (build 35)	MAF < 1%, r2hat < 0.3	SAS, Merlin, R
снѕ	Illumina 370CNV	BeadStudio	call rate<97%, pHWE<10E-5, heterozygotes=0, SNP not in HapMap	306,655	BimBam 0.99	HapMap rel. 22 (build 36)	dosage variance<0. 01	Linear and logistic regression using R, robust estimates of SE
COLAUS	Affymetrix 500K	BRLMM	call rate < 70%, pHWE < 10E-7	390,631	IMPUTE 0.2.0	HapMap rel. 21 (build 35)	none	Matlab
CROATIA- SPLIT	HAP370CNV	Illumina	call rate < 98%, pHWE < 10E-10	330,997	MACH 1.0.15	HapMap rel. 22 CEU haplotypes (build 36)	none	R(GenABEL, ProABEL)
EPIC	Affymetrix 500K	BRLMM	call rate < 90%, pHWE < 10e-6	382,037	IMPUTE 0.3.1	HapMap rel. 21 (Build 35)	none	SAS, Stata, Linux scripts
Fenland	Affymetrix 500K	BRLMM	call rate < 90%, pHWE < 10E-6, MAF < 1%	362,055	IMPUTE 0.4.2	HapMap rel. 22 (build 36)	proper_inf o<0.4	Linux, Stata 10.1, SNPTEST 1.1.5
FHS	Affymetrix 500K Affymetrix 50K	Affymetrix	call rate < 95%, pHWE < 10E-6	503,526	MACH 1.0.15	HapMap rel. 22 phased CEU haplotypes (build 36)	none	R

	supplemental							
INCIPE	Illumina	Illumina	call rate < 95%, pHWE < 10E-6	635,646	IMPUTE 0.2.0	HapMap rel. 22 phased CEU haplotypes (build 36)	none	R
KORA-F3	Affymetrix 500K	BRLMM	per-chip call rate < 93%, MAF < 5%, discrepancy for one of the 50 SNPs common on both chips, gender checks	380,407	МАСН	HapMap rel. 22 (build 35)	none	MACH2QTL, ProbABEL, R, Visual Basic
KORA-F4	Affymetrix 6.0	BRLMM	per-chip call rate < 93%, per SNP call rate < 93%, MAF < 1%, gender checks	629,893	МАСН	HapMap rel. 22 (build 36)	none	MACH2QTL, ProbABEL, R, Visual Basic
LIFELINES	Illumina CytoSNP12 v2	GenomeStudio	call rate < 95%, pHWE < 1E-05	257,581		HapMap rel. 22 phased CEU haplotypes (build 36)	none	NO
MESA	Affymetrix Genome-Wide Human SNP Array 6.0	Birdseed v2	call rate < 95%, MAF ≤ 1%	897,979	IMPUTE 2.1.0	HapMap rel. 22 phased CEU haplotypes (build 36)	none	PLINK
MICROS	Illumina Infinium HumanHap300 v2 SNP bead microarrays	Beadstudio	call rate < 98%, pHWE < 10E-6, MAF < 1%	292,917	MACH 1.0.16	HapMap rel. 22 (build 36)	none	R, GenABEL, ProbABEL;
PREVEND	Illumina CytoSNP12 v2	GenomeStudio	call rate < 95%, pHWE < 1E-05	232,571		HapMap rel. 22 phased CEU haplotypes (build 36)	none	NO
SHIP	Affymetrix 6.0	Birdseed2	none	869,224	IMPUTE 0.5.0	HapMap rel. 22 (build 36)	none	SNPTEST 1.1.5, QUICKTEST 0.94, R, InforSense, InterSystems Caché
SHIP-TREND	Illumina Human Omni 2.5	GenomeStudio	call rate ≤ 0.9, pHWE ≤ 1E-04, monomorphic SNPs	1,782,967	IMPUTE 2.1.2.3	HapMap rel. 22 phased CEU haplotypes (build 36)	duplicate RSID but different positions	QUICKTEST 0.95, R, InforSense, InterSystems Caché
in silico replica	ation	-		-	-			
GANI_MED	Illumina Infinium PsychArray	GenomeStudio	call rate ≤ 0.95, pHWE ≤ 1E-04, MAF ≤ 0.005	305,145	IMPUTE 2.3.1	1000 Genomes Phase I v3 ALL (macGT1) (build 37)	duplicate IDs (via positions)	R, PLINK, gtool, InterSystems Caché
GENDIAN	Genome-Wide Human SNP Array 6.0	Birdseed (BRLMM)	n=126,259 SNPs (chr 1-chr22, chr X) were excluded from imputation by SNP QC due to one of the following: HWE-p < 10-6; monomorphic SNPs; MAF>.1 & call rate<.9 MAF>.09 & MAF <=.1 & call rate<.91 MAF>.08 & MAF <=.09 & call rate<.92	747,402	MACH 1.0.18.c MiniMac 2012-10-09	GIANT ALL 1000G v3 ref panel GRCh (build 37)	none	R

			MAF>.07 & MAF <=.08 & call rate<.93 MAF>.06 & MAF <=.07 & call rate<.94 MAF>.05 & MAF <=.06 & call rate<.95 MAF>.04 & MAF <=.05 & call rate<.96 MAF>.03 & MAF <=.04 & callr ate<.97 MAF>.02 & MAF <=.03 & call rate<.98 MAF>.01 & MAF <=.02 & call rate<.99 MAF <=.01 & call rate<.99					
Vanderbilt Omni1	Illumina HumanOmni1- Quad	BeadStudio	call rate < 98%, IBD (Z0<0.8), Mendel errors > 0, Duplicate concordance < 100%	946,523	IMPUTE 2.3.0	1000 Genomes Phase 1 integrated v3	Genotype Likelihood <0.9	Plink and R
Vanderbilt Omni5	Illumina HumanOmni5- Quad	BeadStudio	call rate < 98%, IBD (ZO<0.8), Mendel errors > 0, Duplicate concordance < 100%	3,819,154	IMPUTE 2.3.0	1000 Genomes Phase 1 integrated v3	Genotype Likelihood <0.9	Plink and R
Vanderbilt 660W	Illumina Human660W- Quad	BeadStudio	call rate < 98%, IBD (ZO<0.8), Mendel errors > 0, Duplicate concordance < 100%	530,014	IMPUTE 2.3.0	1000 Genomes Phase 1 integrated v3	Genotype Likelihood <0.9	Plink and R
de novo replic	ation					-		•
	genotyping platform	amount of DNA used per SNP (in ng)	genotyping method	n duplicates and concordanc e per SNP (provide per individual SNP)	number attempted /number genotyped (per individual SNP)	Other QC indices that your lab uses		
ESTHER	LGC genomics SNP-line, using KASP Chemistry and 1536-well plates	3.75	De novo genotyping using KASPar v4.0 after whole genome amplification by primer extension preamplification (PEP) using thermostable DNA polymerases	LGC Genomics does not add duplicates. The data for each SNP represents one reaction per sample.	call rate range 0.98 - 1	none indicated by the lab		
SKIPOGH	LGC genomics SNP-line, using KASP Chemistry and 1536-well plates	5 -7.5	De novo genotyping using KASPar v4.0 after whole genome amplification by primer extension preamplification (PEP) using thermostable DNA polymerases	29 participants were genotyped in duplicate. SNP concordance	SNP call rates varied from 94.5% to 99.5% (median 97.2)	All assays have been validated on an in-house DNA panel (44 random Caucasian DNA samples). All sample plates genotyped include at least two negative controls. ie.		

				varied between		blank/water controls. All		
				86% and		initially generated by an		
				100%.		automated algorithm		
						(genotype calling based		
						upon recorded		
						fluorescence values). All		
						genotyping data is		
						manually checked and		
						verified by no less than		
						two experienced scientists		
						at LGC genomics.		
				At least 15%				
				duplicate				
	Mass ARRAY			genotyping				
KORAF4 non-	Analyzer 4	15	iPlex Gold	per SNP.	NA	NA		
GWAS	system			Concordanc				
	,			e≥95%,				
				median =				
				100%				
				At least 15%				
				genotyning				
KORAF3 non-	Mass ARRAY			per SNP				
GWAS	Analyzer 4	15	iPlex Gold	Concordanc	NA	NA		
	system			e≥95%.				
				median =				
				100%				
				70				
				duplicates;	46 SNPs			
				46 SNPs	were			
				were	genotyped			
				genotyped;	and had an	automatic calculation of		
	Mass ARRAY			44 SNPs had	aerage	the HWE, comparison of		
SAPHIR	Analyzer 4	15	iPlex Gold	a .	callrate of	the obtained genotypes		
	system			concordance	99,3%	with HapMap Data		
				of 100%; 2	(between			
				SINPS nad	98.15%			
				discordant				
				complo	33.03%)			
1	1	1		Julipie	1		1	

				Fre-						
		position		quency				, Sai	mple	
SNPID	chr	(hg18) Al	lele1 Allele2	Allele1	Effect	SE	p-value	I ⁻ % Siz	e In Gene	Genes Within 100kb
rs880315	1	10719453 t	С	0.65	-0.042	2 0.009	9.1E-06	0	41333 CASZ1	
										MIR92B(dist=2901),THBS3(dist=3312),TRIM46(dist=4620),KRTCA
										P2(dist=16263),MTX1(dist=16423),GBAP1(dist=21549),GBA(dist=
										42172),DPM3(dist=49071),SLC50A1(dist=50733),EFNA1(dist=546
										81),FAM189B(dist=54929),SCAMP3(dist=63703),CLK2(dist=70592
rs4072037	1	153428691 t	С	0.54	0.029	9 0.006	2.5E-06	0	54450 <i>MUC1</i>),HCN3(dist=85151),PKLR(dist=97017)
										MTX1(dist=2598),GBAP1(dist=7724),MIR92B(dist=10829),MUC1(
										dist=13186),TRIM46(dist=18445),GBA(dist=28347),KRTCAP2(dist=
										30088),FAM189B(dist=41104),SCAMP3(dist=49878),CLK2(dist=56
										767),DPM3(dist=62896),SLC50A1(dist=64558),EFNA1(dist=68506)
rs914615	1	153442516 a	g	0.47	-0.030	0.007	7.4E-06	0	44877 THBS3	,HCN3(dist=71326),PKLR(dist=83192)
rs17346504	2	137640231 t	С	0.12	0.050	0.011	7.2E-06	27	53401 THSD7B	
rs9333289	2	187206352 t	С	0.70	-0.030	0.007	9.3E-06	24	54441 <i>ITGAV</i>	FAM171B(dist=60682)
rs9333290	2	187227583 t	g	0.30	0.038	3 0.008	7.5E-07	15	54441 <i>ITGAV</i>	FAM171B(dist=39451)
rs13006483	2	187230995 t	g	0.30	0.03	7 0.008	1.2E-06	15	54441 <i>ITGAV</i>	FAM171B(dist=36039)
rs3816386	2	187236880 a	g	0.69	-0.03	5 0.007	2.9E-06	0	54441 <i>ITGAV</i>	FAM171B(dist=30154)
rs11685758	2	187241613 t	С	0.31	0.039	9 0.008	2.7E-06	0	44877 ITGAV	FAM171B(dist=25421)
rs12151442	2	187246092 t	С	0.70	-0.030	0.007	5.5E-06	1	54441 <i>ITGAV</i>	FAM171B(dist=20942)
rs13001028	2	187255140 a	g	0.69	-0.03	5 0.007	2.0E-06	0	54440	ITGAV(dist=1266),FAM171B(dist=11894)
rs13028817	2	187255744 t	g	0.70	-0.029	9 0.007	7.3E-06	0	54439	ITGAV(dist=1870),FAM171B(dist=11290)
rs12615659	2	187259552 a	t	0.30	0.030	0.007	4.3E-06	2	54439	ITGAV(dist=5678),FAM171B(dist=7482)
rs11678190	2	187268553 a	С	0.69	-0.036	6 0.007	1.5E-06	0	54441 FAM171B	ITGAV(dist=14679)
rs17750683	2	187328542 a	t	0.68	-0.033	3 0.007	4.1E-06	22	54439 FAM171B	ZSWIM2(dist=71910),ITGAV(dist=74668)
rs13026081	2	187334583 t	С	0.32	0.032	2 0.007	6.8E-06	21	54434 FAM171B	ZSWIM2(dist=65869),ITGAV(dist=80709)
rs11783652	8	55021047 a	g	0.32	0.03	7 0.008	2.4E-06	0	54450 RGS20	TCEA1(dist=20620)
rs17301329	8	55021534 a	t	0.29	0.042	2 0.008	5.6E-07	0	54450 RGS20	TCEA1(dist=20133),LYPLA1(dist=99946)
rs16919699	8	55021582 t	С	0.66	-0.03	7 0.008	2.3E-06	0	54450 RGS20	TCEA1(dist=20085),LYPLA1(dist=99898)
rs1016013	9	96516305 a	g	0.42	0.028	3 0.006	6.4E-06	5	54450	C9orf3(dist=12467),FBP1(dist=73953),MIR2278(dist=95760)
rs7851726	9	96543806 t	С	0.42	0.02	7 0.006	5.2E-06	3	54450 C9orf3	MIR2278(dist=68259)
rs446540	9	96549020 a	g	0.43	0.028	3 0.006	5.8E-06	10	54304 C9orf3	MIR2278(dist=63045)
rs183066	9	96557253 t	С	0.57	-0.028	3 0.006	5.8E-06	9	54448 C9orf3	MIR2278(dist=54812)
rs2584806	9	96569099 a	С	0.58	-0.02	7 0.006	9.3E-06	9	54449 C9orf3	MIR2278(dist=42966)
rs1109861	10	11286275 a	С	0.55	-0.030	0.006	1.9E-06	5	54442 CELF2	CELF2-AS2(dist=98818)
rs1801239	10	16959058 t	С	0.90	-0.06	5 0.011	4.6E-09	31	54450 CUBN	RSU1(dist=59599)

Supplementary Table 4: SNPs associated with UACR among all individuals with a p-value of <1E-05.

rs17343073	10	16972202 a	t	0.90	-0.071	0.012	4.0E-09	22	54449 CUBN	RSU1(dist=72743)
rs6602163	10	17006772 a	g	0.84	-0.056	0.009	1.2E-09	5	54450 CUBN	
rs10795433*	10	17009929 a	С	0.86	-0.061	0.010	2.4E-10	6	54450 CUBN	
rs2417849	12	20167780 t	С	0.37	0.028	0.006	9.5E-06	39	54441	LOC100506393(dist=24711)
rs2303658	12	20169697 a	g	0.34	0.030	0.007	9.5E-06	31	54442	LOC100506393(dist=26628)
rs11609944	12	20170557 a	g	0.38	0.028	0.006	9.6E-06	42	54449	LOC100506393(dist=27488)
rs1728897	15	53088662 t	С	0.54	-0.028	0.006	4.1E-06	0	54433	
rs12594729	15	53088684 a	g	0.50	0.029	0.006	2.0E-06	0	54450	
rs7167661	15	53090751 t	С	0.54	-0.028	0.006	3.5E-06	0	54450	
rs11071163	15	53091242 a	g	0.50	-0.029	0.006	9.2E-06	0	54449	
rs7173577	15	53092295 a	g	0.45	-0.029	0.006	2.3E-06	0	54450	
rs1728867	15	53094106 a	g	0.45	-0.030	0.006	8.3E-07	0	54449	
rs951048	15	53094503 a	t	0.44	-0.030	0.006	8.7E-07	0	54449	
rs2414396	15	53094680 a	g	0.46	-0.031	0.006	7.6E-07	0	54449	
rs12907410	15	53095223 t	С	0.56	0.028	0.006	3.7E-06	0	54449	
rs1728886	15	53095714 t	С	0.56	0.030	0.006	1.2E-06	0	54449	
rs17818939	15	53096140 a	g	0.44	-0.030	0.006	1.1E-06	0	54450	
rs1728878	15	53097144 t	С	0.57	0.028	0.006	1.9E-06	0	54450	
rs8042768	15	53097375 a	g	0.43	-0.028	0.006	2.1E-06	0	54448	
rs1690363	15	53098119 a	g	0.43	-0.028	0.006	2.0E-06	0	54448	
rs1690365	15	53098549 t	С	0.56	0.028	0.006	1.9E-06	0	54450	
rs1614271	15	53098677 t	С	0.57	0.029	0.006	1.6E-06	0	54448	
rs1690366	15	53098855 t	g	0.44	-0.030	0.006	2.0E-06	0	54448	
rs1690367	15	53099066 a	g	0.43	-0.028	0.006	1.8E-06	0	54406	
rs7180127	15	53103432 t	С	0.51	0.029	0.006	3.7E-06	0	54449	
rs10083619	15	53106962 a	g	0.51	0.029	0.006	3.5E-06	0	54448	
rs2899576	15	53107909 t	С	0.48	-0.030	0.006	1.2E-06	0	54424	
rs1528472	15	53108420 a	С	0.48	-0.032	0.006	5.4E-07	0	54445	
rs17238122	15	53109188 a	g	0.48	-0.031	0.006	8.8E-07	0	54443	
rs1528477	15	53111680 a	g	0.48	-0.031	0.006	1.5E-06	0	54449	
rs1830324	15	53112207 a	g	0.51	-0.030	0.006	3.4E-06	0	54449	
rs11858741	15	53112699 a	g	0.51	0.030	0.006	2.2E-06	0	54450	
rs231226	19	40959617 t	с	0.62	-0.033	0.007	5.1E-06	22	44877 ARHGAP33	PROSER3(dist=7700),LINC01529(dist=12001),HSPB6(dist=19847), LIN37(dist=22357),PRODH2(dist=23115),PSENEN(dist=29721),U2 AF1L4(dist=31434),IGFLR1(dist=34426),KMT2B(dist=37996),NPHS 1(dist=48497),ZBTB32(dist=59837),KIRREL2(dist=80033),APLP1(d st=91624),UPK1A(dist=98390) PROSER3(dist=7990),LINC01529(dist=11711),HSPB6(dist=20137), LIN37(dist=22647),PRODH2(dist=22825),PSENEN(dist=30011),U2 AF1L4(dist=31724),IGFLR1(dist=34716),KMT2B(dist=38286),NPHS
rs231227	19	40959907 a	g	0.38	0.033	0.007	4.9E-06	22	44877 ARHGAP33	1(dist=48207),ZBTB32(dist=60127),KIRREL2(dist=79743),APLP1(d st=91334),UPK1A(dist=98680)

rs2828785 21 24359376 t c 0.27 -0.038 0.008 7.9E-06 0 54450

Standard error (SE) and p-values are corrected for genomic control. A1 is the coded allele.

*The previously identified missense variant rs18012399 in CUBN is correlated with the index variant rs10795433 in this study (r²=0.54 and D'=1, based on HapMap r22 CEU data)

Supplementary Table 5: SNPs associated with MA among all individuals with a p-value of <1E-05.

					Fre-							
		position	Allele	Allele	quency					Sample		
SNPID	chr	(hg18)	1	2	Allele1	Effect	SE	p-value	l ² %	Size	In Gene	Genes Within 100kb
rs11579312	1	30429159	t	с	0.69	0.11	0.025	9.7E-06	0	54116		
-												CD48(dist=5425),SLAMF1(dist=26010),SLAMF7(dist=65736),CD
rs3795324	1	158909735	а	С	0.82	-0.15	0.031	9.4E-07	22	52716		84(dist=93805)
rs16827742	2	150615405	а	g	0.06	0.30	0.063	3.1E-06	12	35962		
rs9333289	2	187206352	t	c	0.71	-0.10	0.022	5.2E-06	0	54107	ITGAV	FAM171B(dist=60682)
rs9333290	2	187227583	t	g	0.29	0.11	0.023	5.0E-06	0	54107	ITGAV	FAM171B(dist=39451)
rs13006483	2	187230995	t	g	0.29	0.10	0.023	7.0E-06	0	54107	ITGAV	FAM171B(dist=36039)
rs12151442	2	187246092	t	с	0.70	-0.10	0.022	2.0E-06	0	54107	ITGAV	FAM171B(dist=20942)
rs13001028	2	187255140	а	g	0.70	-0.10	0.023	8.3E-06	0	54106		ITGAV(dist=1266),FAM171B(dist=11894)
rs13028817	2	187255744	t	g	0.70	-0.10	0.022	2.1E-06	0	54105		ITGAV(dist=1870),FAM171B(dist=11290)
rs12615659	2	187259552	а	t	0.30	0.11	0.022	1.3E-06	0	54105		ITGAV(dist=5678),FAM171B(dist=7482)
rs11678190	2	187268553	а	С	0.70	-0.10	0.023	5.1E-06	0	54107	FAM171B	ITGAV(dist=14679)
rs17750683	2	187328542	а	t	0.68	-0.11	0.022	1.4E-06	0	54105	FAM171B	ZSWIM2(dist=71910),ITGAV(dist=74668)
rs13026081	2	187334583	t	С	0.32	0.11	0.022	1.6E-06	0	54093	FAM171B	ZSWIM2(dist=65869),ITGAV(dist=80709)
												MYL3(dist=7196),PRSS42(dist=16576),PTH1R(dist=27075),CCDC
rs1077216	3	46867165	t	С	0.07	0.20	0.044	5.2E-06	5	45096		12(dist=71059)
rs13160548	5	38814607	t	С	0.69	-0.10	0.023	8.2E-06	14	53130	OSMR-AS1	LINC01265(dist=58475),OSMR(dist=67110)
rs12719264	5	119211839	а	g	0.30	-0.11	0.025	6.2E-06	29	54115		
rs2110904	6	107701464	t	С	0.65	0.10	0.022	8.9E-06	0	54116	PDSS2	
rs538641	8	103072879	а	g	0.05	0.28	0.062	7.8E-06	0	50048	NCALD	
rs1801239	10	16959058	t	С	0.90	-0.23	0.035	1.7E-10	18	54115	CUBN	RSU1(dist=59599)
rs17343073	10	16972202	а	t	0.90	-0.23	0.036	3.0E-10	0	54115	CUBN	RSU1(dist=72743)
rs6602163	10	17006772	а	g	0.83	-0.17	0.029	1.5E-09	5	54116	CUBN	
rs10795433	10	17009929	а	С	0.85	-0.20	0.031	1.3E-10	4	54116	CUBN	
rs12764441	10	72361657	t	С	0.48	-0.10	0.021	3.5E-06	0	54116		PCBD1(dist=43108),SGPL1(dist=50719)
											C10orf32-	C10orf32(dist=11937),CYP17A1(dist=39365),CNNM2(dist=4142
rs3740393	10	104626645	С	g	0.21	0.13	0.028	6.1E-06	19	54048	ASMT	0),WBP1L(dist=60634)
												CHRDL2(dist=14303),MIR4696(dist=38142),POLD3(dist=39066),
rs10899033	11	74070819	С	g	0.72	0.11	0.025	9.3E-06	0	54116		RNF169(dist=66742)
												ANG(dist=7537),RNASE4(dist=7573),OR6S1(dist=34949),EDDM3
												A(dist=69300),LOC254028(dist=69419),RNASE12(dist=85817),R
rs10498273	14	20214639	С	g	0.94	-0.21	0.047	9.6E-06	36	53131		NASE11(dist=86382),EDDM3B(dist=91787)
rs7145202	14	22161945	t	С	0.62	0.10	0.022	3.7E-06	0	54106		ABHD4(dist=10840),DAD1(dist=33962)
rs6572602	14	22163380	а	g	0.62	0.11	0.024	4.6E-06	0	41412		ABHD4(dist=12275),DAD1(dist=35397)
												ZSCAN5B(dist=8615),ZNF444(dist=20181),ZSCAN5A(dist=40236)
rs274173	19	61384255	С	g	0.17	-0.23	0.051	5.2E-06	12	38796	GALP	,ZNF787(dist=59701)

rs6030216	20	40486448	t	С	0.17	0.12	0.027 6	6.0E-06	0	54115	PTPRT
rs4812598	20	40487956	С	g	0.83	-0.12	0.027 9	9.1E-06	0	54115	PTPRT
rs6513791	20	40491536	t	С	0.18	0.12	0.026 4	4.4E-06	12	54115	PTPRT
rs4810356	20	40491604	t	С	0.82	-0.13	0.028 7	7.6E-06	11	54115	PTPRT
rs6030232	20	40496297	а	t	0.82	-0.12	0.027 8	8.7E-06	0	54115	PTPRT
rs6030238	20	40498930	а	g	0.81	-0.12	0.026 6	5.0E-06	12	54115	PTPRT

Odds rations can be obtained by exponentiating the effect to the basis *e*.

Supplementary Table 6: SNPs associated with UACR among individuals without diabetes with a p-value of <1E-05.

					Fre-							
		position	Allele	Allele	quency					Sample		
SNPID	chr	(hg18)	1	2	Allele1	Effect	SE	p-value	1 ² %	Size	In Gene	Genes Within 100kb
rs17377079	1	84999401	а	g	0.15	0.060	0.013	6.9E-06	9	46061		LPAR3(dist=52273),SSX2IP(dist=70573)
				0								MIR92B(dist=2901),THBS3(dist=3312),TRIM46(dist=4620),KRTC
												AP2(dist=16263),MTX1(dist=16423),GBAP1(dist=21549),GBA(di
												st=42172),DPM3(dist=49071),SLC50A1(dist=50733),EFNA1(dist
												=54681),FAM189B(dist=54929),SCAMP3(dist=63703),CLK2(dist
rs4072037	1	153428691	t	с	0.54	0.028	0.006	8.5E-06	0	46061	MUC1	=70592),HCN3(dist=85151),PKLR(dist=97017)
rs9333290	2	187227583	t	g	0.30	0.037	0.008	4.1E-06	3	46052	ITGAV	FAM171B(dist=39451)
rs13006483	2	187230995	t	g	0.30	0.035	0.008	6.7E-06	3	46052	ITGAV	FAM171B(dist=36039)
rs13001028	2	187255140	а	g	0.69	-0.034	0.008	9.9E-06	0	46052		ITGAV(dist=1266),FAM171B(dist=11894)
rs11678190	2	187268553	а	С	0.69	-0.035	0.008	8.7E-06	0	46052	FAM171B	ITGAV(dist=14679)
rs17750683	2	187328542	а	t	0.68	-0.035	0.008	4.6E-06	0	46052	FAM171B	ZSWIM2(dist=71910),ITGAV(dist=74668)
rs13026081	2	187334583	t	С	0.32	0.034	0.008	8.3E-06	0	46045	FAM171B	ZSWIM2(dist=65869),ITGAV(dist=80709)
rs4674086	2	201032130	t	С	0.46	0.028	0.006	8.7E-06	0	45053	SPATS2L	KCTD18(dist=29799),SGOL2(dist=66980)
rs9372871	6	127849645	t	С	0.89	-0.046	0.010	4.2E-06	2	45094	SOGA3	KIAA0408(dist=27417),C6orf58(dist=90367)
rs9372872	6	127849848	С	g	0.11	0.046	0.010	2.5E-06	0	46061	SOGA3	KIAA0408(dist=27620),C6orf58(dist=90164)
rs7739650	6	127850605	а	g	0.11	0.046	0.010	3.1E-06	2	46061	SOGA3	KIAA0408(dist=28377),C6orf58(dist=89407)
rs13220247	6	127850652	t	С	0.89	-0.046	0.010	3.4E-06	2	46061	SOGA3	KIAA0408(dist=28424),C6orf58(dist=89360)
rs9388580	6	127851073	t	С	0.89	-0.044	0.010	8.7E-06	6	46061	SOGA3	KIAA0408(dist=28845),C6orf58(dist=88939)
rs12668467	7	13598753	t	С	0.27	-0.043	0.009	4.1E-06	0	46061		
rs1801239	10	16959058	t	С	0.90	-0.054	0.012	4.4E-06	25	46061	CUBN	RSU1(dist=59599)
rs10795433	10	17009929	а	С	0.86	-0.045	0.010	8.7E-06	14	46061	CUBN	
rs2192224	15	24959369	t	g	0.13	0.048	0.011	6.1E-06	0	46061	GABRG3	LOC101928869(dist=26259)
rs7173577	15	53092295	а	g	0.45	-0.029	0.006	6.7E-06	0	46061		
rs1728867	15	53094106	а	g	0.45	-0.028	0.006	7.4E-06	0	46061		
rs951048	15	53094503	а	t	0.44	-0.028	0.006	7.8E-06	0	46061		
rs2414396	15	53094680	а	g	0.46	-0.029	0.006	4.1E-06	0	46061		
rs17818939	15	53096140	а	g	0.44	-0.028	0.006	9.9E-06	0	46061		
rs2899576	15	53107909	t	С	0.48	-0.029	0.006	5.7E-06	0	46035		
rs1528472	15	53108420	а	С	0.48	-0.030	0.007	3.1E-06	0	46056		
rs17238122	15	53109188	а	g	0.48	-0.030	0.007	4.8E-06	0	46054		
rs1528477	15	53111680	а	g	0.48	-0.030	0.007	6.6E-06	0	46061		
rs11858741	15	53112699	а	g	0.51	0.029	0.007	7.9E-06	0	46061		
												MYOM1(dist=23289),LPIN2(dist=31571),LOC727896
rs4528660	18	3033516	t	С	0.91	-0.073	0.017	9.4E-06	3	33478		(dist=96895)

					Fre-							
		position	Allele	Allele	quency					Sample		Genes Within 100kb
SNPID	chr	(hg18)	1	2	Allele1	Effect	SE	p-value	I ² %	Size	In Gene	[Closest Gene]
rs13427836	2	128744431	t	С	0.14	0.199	0.044	6.1E-06	10	5509	HS6ST1	UGGT1(dist=74712)
rs13428208	2	128744772	t	С	0.14	0.195	0.044	7.6E-06	10	5509	HS6ST1	UGGT1(dist=75053)
rs2405747	2	128748295	t	С	0.15	0.193	0.043	6.9E-06	14	5509	HS6ST1	UGGT1(dist=78576)
rs4662787	2	128752447	t	С	0.18	0.176	0.040	9.0E-06	0	5824	HS6ST1	UGGT1(dist=82728)
rs10183821	2	128753139	а	g	0.81	-0.169	0.038	9.3E-06	0	5825	HS6ST1	UGGT1(dist=83420)
rs13079877	3	2102845	а	g	0.45	0.148	0.033	5.6E-06	25	5825		CNTN4(dist=12705),CNTN4-AS2(dist=24248)
rs7634770	3	67012918	а	С	0.70	-0.142	0.030	2.7E-06	19	5825		[KBTBD8, dist=119174]
rs9876318	3	67014118	а	t	0.69	-0.144	0.030	2.0E-06	20	5824		[KBTBD8, dist=117974]
rs17738155	6	51264035	t	С	0.92	-0.241	0.053	5.9E-06	39	5825		[PKHD1, dist=324068]
rs947724	6	51274689	t	С	0.92	-0.239	0.053	7.5E-06	41	5825		[PKHD1, dist=313414]
rs7792461	7	29479920	t	g	0.39	0.130	0.029	5.1E-06	0	5825	CHN2	PRR15(dist=90032)
rs4722909	7	29481456	а	g	0.60	-0.134	0.029	3.2E-06	0	5823	CHN2	PRR15(dist=88496)
rs4722913	7	29482735	а	g	0.61	-0.131	0.029	4.2E-06	0	5825	CHN2	PRR15(dist=87217)
rs7798161	7	29483162	а	g	0.61	-0.130	0.029	4.7E-06	0	5825	CHN2	PRR15(dist=86790)
rs3828977	7	29486023	а	g	0.59	-0.131	0.029	4.9E-06	0	5825	CHN2	PRR15(dist=83929)
rs7922045	10	122991722	t	С	0.26	0.165	0.033	5.7E-07	0	5824		[FGFR2, dist=236111]
rs729014	10	122992796	t	С	0.15	0.202	0.043	2.4E-06	0	5825		[FGFR2, dist=235037]
rs649529	11	87647899	t	g	0.43	-0.147	0.033	9.3E-06	0	5825		CTSC(dist=18509),RAB38(dist=99616)

Supplementary Table 7: SNPs associated with UACR among individuals with diabetes with a p-value of <1E-05.

Supplementary Table 8: Discovery, replication and combined estimates for all index SNPs associated with UACR in diabetes in the discovery sample at p<1E-05

							disco	very					replic	cation					comb	ined		
Marker	gene nearby	chr	position (hg18)	A A 1 2	Freq A1	beta	SE	p-value	۱ ² %	n	Freq A1	beta	SE	p-value	۱ ² %	n	Freq A1	beta	SE	p-value	۱ ² %	n
rs13427836	HS6ST1	2	12874443	1tc	0.14	0.20	0.04	6.1E-06	10	5509	0.15	0.16	0.07	3.13E-02	58	1890	0.15	0.19	0.04	6.31E-07	30	7399
rs13079877	CNTN4	3	210284	5 a g	0.45	0.15	0.03	5.6E-06	25	5825	0.50	0.04	0.05	5.16E-01	0	1880	0.46	0.12	0.03	2.40E-05	20	7705
rs9876318	KBTBD8	3	67014118	8 a t	0.69	-0.14	0.03	2.0E-06	20	5824	0.69	0.08	0.06	1.56E-01	0	1897	0.69	-0.09	0.03	4.86E-04	37	7721
rs17738155	PKHD1	6	5126403	5tc	0.92	-0.24	0.05	5.9E-06	39	5825	0.92	0.06	0.10	5.30E-01	0	1896	0.92	-0.17	0.05	2.51E-04	42	7721
rs4722909	CHN2	7	2948145	6 a g	0.60	-0.13	0.03	3.2E-06	0	5823	0.60	0.09	0.05	9.66E-02	40	1894	0.60	-0.08	0.03	9.92E-04	38	7717
rs7922045	FGFR2	10	12299172	2tc	0.26	0.17	0.03	5.7E-07	0	5824	0.23	-0.10	0.06	1.05E-01	35	1824	0.25	0.11	0.03	2.41E-04	39	7648
rs649529	RAB38	11	8764789	9tg	0.43	-0.15	0.03	9.3E-06	0	5825	0.43	-0.12	0.05	1.91E-02	0	1962	0.43	-0.14	0.03	5.84E-07	0	7787

A1 is the coded allele (effect allele), i.e. the beta corresponds to the effect by which UACR changes per each additional copy of the coded allele.

The l² statistic of the combined results was obtained from a separate analysis incorporating each discovery file with single GC-correction and the replication files. Standard error (SE) and p-value of the combined results are based on double-GC corrected results as described in the methods.

Supplementary Table 9: Association results for the index SNPs near RAB38/CTSC and in HS6ST1 in the DCCT/EDIC Study

incident microalbuminuria (1244 individuals [268 cases]; primary endpoint)											
SNP	effect alelle	frequency of	effect	se	p-value						
		effect allele									
rs649529	Т	0.42	0.04	0.09	0.64						
rs13427836	Т	0.14	-0.18 0.14		0.20						
time to macroalbuminuria or ESRD (1304 individuals [133 cases]; secondary endpoint)											
SNP	effect alelle	frequency of	effect	se	p-value						
		effect allele									
rs649529	Т	0.42	0.24	0.14	0.09						
rs13427836	Т	0.14	-0.31	0.22	0.16						

Cox proportional hazards regression models were used to estimate hazard ratios after adjustment for cohort status (primary vs. secondary), treatment (intensive vs. conventional), cohort*treatment interaction (stratified by DCCT year of entry), age of diagnosis squared, sex, diabetes duration squared, body mass index, blood pressure, triglyceride, HDL-C, total cholesterol, smoking (all at baseline), as well as time-dependent updated mean A1C, and time-dependent indicators for hypertension diagnosis and treatment. Imputation quality (rs13427836) and call rate (rs649529) were both >=0.99.