Medium	PTX solubility (µg/mL)	References
Deionized water	0.3	[1]
Deionized water	0.7	[2]
Deionized water	1.0	[2]
Deionized water	6	[4]
Deionized water	30	[4]
Phosphate buffered saline (PBS, pH 7.4)	0.3	[6]
PBS	0.95	[3]
PBS	3	[7]
PBS	6-10	[8]
PBS with 0.05% Tween 80	3	[9]
PBS with 0.1% Tween 80	2.7	[6]
PBS with 0.1% Tween 80	6.32	[9]
PBS with 0.15% Tween 80	6.8	[9]
PBS with 0.2% Tween 80	8.75	[9]
PBS with 1% Tween 80	13.8	[6]
PBS with 1% Tween 80	37	[9]
PBS with 2% Tween 80	20	[10]
PBS with 2% Tween 80	70	[9]
PBS with 3% Tween 80	115	[9]
Calf serum	171	[7]

Supporting Table 1. Reported solubility values of PTX in aqueous media

Ref	PTX Formulation	Sampling methods	Total PTX used for the study	Release medium ¹	Initial PTX concentration in release medium	Conclusion
[11]	Thermo- sensitive polymeric micelles	Dialysis (MWCO: 1kDa): entire medium exchange	1 mg/mL as PMs, eq. to 39 μg/mL PTX (with 3.9% drug loading) in a dialysis bag	PBS 50 mL	39 μg/mL in a dialysis bag	61% release over 7d.
[12]	Thermo- sensitive polymeric micelles (PM)	Dialysis ² (membrane MWCO: 10 kDa): Entire medium exchange at timed intervals	5 mg as PM, eq. to >225 μg PTX (with >4.5% drug loading) in 5 mL in a dialysis bag	PBS 50 mL	 45 µg/mL in a dialysis bag 4.1 µg/mL in the system³ 	<30% of PTX release in 3d and ~35% release in 6d.
[8]	Cholesterol- modified O- carboxymethyl chitosan (CCMC) NPs	Dialysis (membrane MWCO: 12–14 kDa): 0.5 mL sampling and replacement at timed intervals	Not specified ("PTX/PBS maintained at ≤4 µg/mL.")	PBS 50 mL	≤4 µg/mL in the system	32% release in 12h and 59.3% in 84h.
[13]	Thermo- responsive and reduction- sensitive polymeric micelles	Dialysis (MWCO 3.5kDa): medium change not specified.	1 mg/mL as PMs, eq. to 98 μg/mL PTX (with 9.8% drug loading) in PBS 1.5 mL in a dialysis bag (total PTX: 147 μg)	PBS 500 mL	 98 µg/mL in a dialysis bag 0.29 µg/mL in the system 	Sustained drug release profile, with no obvious burst (23% by 8h and 62% by 24 h with no further release).
[14]	Chitosan- quercetin (CQ) micelles	Dialysis (MWCO: 14kDa): Entire medium exchange at timed intervals	200 μg PTX eq. in 1 mL in a dialysis bag	PBS 100 mL	 200 µg/mL in a dialysis bag 2 µg/mL in the system 	Zero-order release up to 32.92% in 48h.

Supporting Table 2. PTX release kinetics studies performed in PBS

[15]	HGC (hydrophobica lly modified glycol chitosan) NPs	Dialysis (MWCO: 12–14 kDa): entire medium exchange at timed intervals	0.1 mg as HGC NPs, eq. to 10 μg PTX (with 10% drug loading) in 50 μL in a dialysis tube	PBS 30 mL	 200 μg/mL in a dialysis tube 0.33 μg/mL in the system 	50% release in 1d, followed by a sustained release to 80% by 10d.
[6]	Polymeric NPs	 Dialysis (MWCO: 10kDa) Franz diffusion cell method separated by a dialysis membrane (MWCO: 10kDa) Partial medium sampling and replacement at timed intervals 	 Dialysis: 250 µg/mL PTX 1 mL in a dialysis cassette (total PTX: 250 µg) Franz diffusion cell: 20 µg/mL PTX in 0.5 mL donor compartment (total PTX: 10 µg) 	 Dialysis: PBS 200 mL Franz diffusion cell: PBS 5 mL as a receptor compart ment 	 Dialysis: 250 µg/mL in a dialysis bag; 1.24 µg/mL in the system Franz cell: 20 µg/mL in the donor; 1.8 µg/mL in the system 	 Near zero-order release over 72h Dialysis: 5.9%, 12.1%, 19.4% over 6, 12, and 24h. Franz diffusion cell: 6.0, 12.9, 18.8% over 6, 12, and 24h.
[6]	Polymeric NPs in HPMC gel	Franz diffusion cell method separated by a dialysis membrane (MWCO: 10kDa): Partial medium sampling and replacement at timed intervals	10 μg PTX in a donor compartment	PBS 5 mL as a receptor compartment	2 μg/mL in the system	Near zero-order release up to 22% over 48h.
[3]	Liposomes	Dialysis (MWCO: 10 kDa): partial sampling of release medium at timed intervals	Unspecified amount of liposomes in 2 mL in a dialysis cassette	PBS 400 mL	N/A	5.3% release over 120h.

[16]	Polymeric NPs	Centrifugation ⁴ (11,500 rpm for 15 min): Entire medium exchange at timed intervals	1 mg as NPs, eq. to 52 µg PTX (PLA-TPGS NPs with 5.2% drug loading) and 55 µg PTX (PLGA NPs with 5.5% drug loading)	PBS 2 mL	26 μg/mL (PLA-TPGS NPs) or 27.5 μg/mL (PLGA NPs)	>20% in 6h, followed by sustained release up to 80% over 18d (PLA-TPGS NPs); ~20% release in 6h, followed by sustained release up to 60% over 18d (PLGA NPs).
[17]	Polymeric NPs	Centrifugation: Entire medium exchange at timed intervals	Not specified	PBS 20 mL	N/A	20% release in 1h, followed by sustained release over 80h.
[18]	Chitosan–lipid implants	Partial medium exchange (2 mL out of 5 mL) at timed intervals	10-15 mg film, eq. to 1-1.5 mg PTX (with 10% drug loading)	 0.01 M PBS 0.01 M PBS containin g 2 mg/mL of lysozyme Human ascites fluid mL each 	200-300 µg/mL in the system	 Near zero-order release over 84d: Total 9.4% release in PBS Total 62% release in lysozyme/PB Total 69% release in ascites fluid.
[19]	PLGA/Polyca prolactone (PCL) layered stents	Entire medium exchange at timed intervals	Not specified	PBS 3 mL	N/A	Three stage release (initial burst, diffusion-controlled release, and degradation- controlled release): release rate depending on the number of layers and drug loading.

- 1. Release experiments were performed at 37°C under constant agitation.
- 2. Dialysis method: NP suspension is placed in a dialysis bag or cassette with a specified molecular weight cut-off (MWCO) and sealed. The dialysis bag is immersed in a release medium and continuously stirred. Partial or entire release medium is exchanged with an equal volume of fresh medium at timed intervals.
- 3. Initial PTX concentration in the system: Total amount of PTX / Volume of the total release medium in the beginning of experiment.
- 4. Centrifugation: NPs with a known amount are dispersed in a release medium and continuously agitated. At timed intervals, the NP suspension is centrifuged to separate the NP pellet and supernatant. The entire supernatant or a large fraction of the supernatant is exchanged with an equal volume of fresh medium. The NP pellet is resuspended and agitated till the next time point.

Ref	PTX Formulation	Sampling methods	Total PTX used for the study	Release medium	Initial PTX concentration in release medium	Conclusion
[20]	Liposomes	Dialysis (MWCO: 8- 14 kDa): Partial replacement (0.5 mL out of 900 mL) at timed intervals.	Liposome suspension eq. to 1 mg/mL PTX 1 mL in a dialysis bag	0.1%Tween 80/PBS 900 mL	 1 mg/mL in a dialysis bag 1.1 µg/mL in the system 	19.24% release in 2h and a total of 60.26% release in 24h
[9, 21]	PEGylated liposomes and PEGylated immune- liposomes	Dialysis (MWCO: 6-8 kDa): Partial (0.5mL out of 200 mL) sampling and replacement at timed intervals.	1.5 mg/mL PTX eq. in 0.1 mL in a dialysis tube (Total PTX: 150 μg)	0.1% Tween 80/PBS 200 mL	 1.5 mg/mL in a dialysis bag 0.75 µg/mL in the system 	 PEGylated liposomes: 15% initial release in the first 2h and 33% in 24 h. PEGylated immunoliposomes: 36% in 24h.
[22]	Superpara- magnetic iron oxide NPs	Dialysis (MWCO: 10 kDa): Partial (2 mL out of 10 mL) replacement of release medium at timed intervals.	60 mg NPs eq. to 10 mg PTX	1% Tween 80/PBS 20 mL	500 μg/mL in the system	27% release over the first 8h, 76% by 110h, and ~100% by 15d.
[23]	Hydrotropic oligomer- glycol chitosan (HO-GC) NPs	Dialysis (membrane (MWCO: 8 kDa): Entire medium exchange at timed intervals	1 mg as HO-GC NPs, eq. to 200 μg PTX (with 20% drug loading) in 1 mL PBS in a dialysis tube	PBS with 0.1 M sodium salicylate, volume unspecified	N/A	>60% release in 24h followed by sustained release up to >80% in 3d.
[24]	Pluronic/Span	Dialysis: 1 mL	Unspecified amount	0.1% Tween	N/A	30% release in 8h and

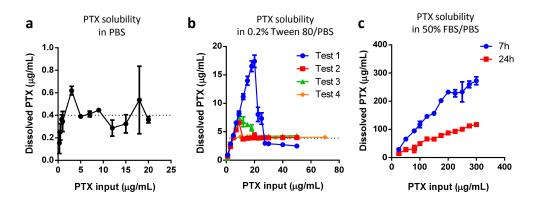
Supporting Table 3. PTX release kinetics studies performed in PBS with a dissolution aid

	40 NPs	exchange at timed intervals	of NPs dispersed in 1 mL PBS or fetal bovine serum in a dialysis bag	80/PBS 50 mL		<60% release (as suspended in FBS) or 70% (as suspended in PBS) in 48h.
[25]	Polymeric micelles stabilized with ionic complexation	Dialysis (membrane MWCO: 3.5 kDa): Partial (1 mL) sampling of release medium at timed intervals.	Not specified	0.1% Tween 80/PBS, volume not specified	N/A	45% release in 24h, followed by a sustained, slow release up to 65% over 2 weeks.
[26]	PLGA NPs and PLGA- chitosan NPs	Centrifugation (10,000 rpm for 10 min): Partial replacement (0.9 mL out of 1 mL) of release medium at timed intervals.	NPs eq. to 3 µg PTX	0.1% Tween 80/PBS 1 mL	3 μg/mL in the system	11~12% in 3h and a total release of 76~83% by 24h.
[27, 28]	PLGA NPs	Centrifugation (10,000 rpm for 10 min at 4°C): Partial replacement (0.8 mL out of 1 mL) of release medium at timed intervals.	NPs eq. to 3 or 8.75 μg PTX	PBS or 0.2% Tween 80/PBS 1 mL	3 or 8.25 µg/mL in the system	 In PBS: 20% release in 4h with no further release. In 0.2% Tween 80/PBS: 60-70% of PTX release in 4h.
[29]	PEG-PLA NPs	Centrifugation (13,500 rpm for 10 min)	1 mg as NPs, eq. to 25.8 μg PTX (with 2.58% drug loading)	0.1% Tween 80/PBS 1 mL	25.8 μg/mL in the system	10% release in 1h and a total of 30% release in 24h.
[30]	PLA-Tween 80 copolymer NPs	Centrifugation (11,500 rpm for 20 min): Entire medium	1 mg as NPs, eq. to 60 μg PTX (with 6% drug loading)	0.1% Tween 80/PBS 2 mL	30 μg/mL in the system	23-26.1 % release in the first day and 52.1-62% release in 21d.

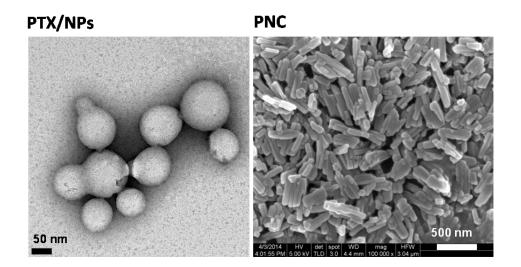
		change at timed intervals.				
[31]	PLGA microparticles	Centrifugation	50 μg PTX eq.	0.1% Tween 80/PBS 1 mL	50 μg/mL in the system	An initial burst release during the first 24h, followed by slower sustained release over 3 weeks and a third phase with a more accelerated release. 12-71% release over 28d according to the polymer composition, molecular weight, and particle size.
[32]	Polymeric NPs	Centrifugation (25,000 rpm for 15 min): entire medium change at timed intervals.	5 mg as NPs, eq. to 400-500 μg PTX (with 8-10% drug loading)	0.1% Tween 80/PBS 8 mL	50-62.5 μg/mL in the system	33.35-47.38% release in the first 5 h, followed by a sustained release up to 45- 65% in 28d.
[33]	Chitosan NPs	Centrifugation (10,000g for 10 min)	10 mg as NPs, eq. to 3.54 mg PTX (with 35.4% drug loading)	0.1% Tween 80/PBS 10 mL	354 μg/mL in the system	59.4% release in 9 days and 72% in 22 days
[34]	PLGA NPs	Centrifugation: Partial (2mL out of 10 mL) sampling and replacement at timed intervals.	5 mg PTX eq.	0.3% Tween 80/PBS 10 mL	500 μg/mL in the system	A rapid initial release during the first 24 h, followed by a slower and continuous release: 53.5 – 93.3% release over 48h depending on drug/polymer ratio
[35]	Polyester Nanosponges	Centrifugation: Entire medium exchange at	4.8 mg PTX eq.	0.1% Tween 80/PBS 5	960 μg/mL in the system	An initial burst release followed by near zero-

		timed intervals.		mL		order release: Release rate and total drug release varied with the crosslinking density of polymer network.
[36]	Eudragit S100- coated alginate microspheres	Centrifugation (1000g for 10 min)	Microparticles eq. to 2 mg PTX	0.02% Tween 80 with a varying pH 10 mL	1 mg/mL in the system	Initial burst release to varying degrees according to the polymer concentration and crosslinking density, followed by a sustained release.
[37]	Polyanhydride NPs	Partial medium exchange at timed intervals.	Not specified	0.1% Tween 80/PBS 20 mL	N/A	Zero-order release up to 89.73 or 97.17% over 90h, depending on drug loading.
[38]	Polymeric microparticles	Centrifugation (4,000 rpm for 2 min): Entire medium exchange at timed intervals.	Not specified	0.05% Tween 80/PBS, volume not specified	N/A	24% in 4d, followed by a slow release up to 30% in 2 weeks.
[39]	PLGA/PEG films	Partial replacement of medium at timed intervals.	30 μ m thick x 1 cm ² as polymer films, eq. to ~300 μ g PTX (with 10% drug loading).	2% Tween 80/PBS 2 mL	150 μg/mL in the system	Initial burst release to varying degrees according to the amount of PEG additives, followed by a slow release.
[10]	PLGA/PEG films	Partial sampling	15 mm punchouts eq. to \sim 730 µg (with \sim 4 µg/mm ² drug loading)	2% Tween 80/PBS 2 mL	365 μg/mL in the system	<20% release in 20 days with PLGA film containing ≤15% PEG.

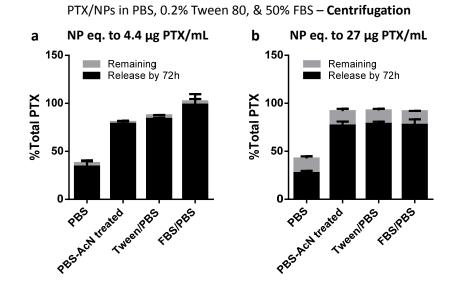
[40]	2	Entire medium exchange at timed	Not specified	10% ethanol/PBS 10 mL	60–85% burst release in 24h; 80-95% release by 5d
		intervals		10 mL	5d.

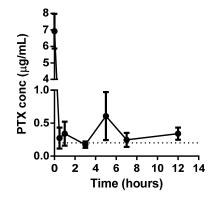

References

- J. Lee, S.C. Lee, G. Acharya, C.J. Chang, K. Park, Hydrotropic solubilization of paclitaxel: analysis of chemical structures for hydrotropic property, Pharm. Res. 20 (2003) 1022-1030.
- [2] A.E. Mathew, M.R. Mejillano, J.P. Nath, R.H. Himes, V.J. Stella, Synthesis and evaluation of some water-soluble prodrugs and derivatives of taxol with antitumor activity, J. Med. Chem. 35 (1992) 145-151.
- [3] J.A. Zhang, G. Anyarambhatla, L. Ma, S. Ugwu, T. Xuan, T. Sardone, I. Ahmad, Development and characterization of a novel Cremophor EL free liposome-based paclitaxel (LEP-ETU) formulation, Eur. J. Pharm. Biopharm. 59 (2005) 177-187.
- [4] B.D. Tarr, S.H. Yalkowsky, A new parenteral vehicle for the administration of some poorly water soluble anti-cancer drugs, J. Parenter. Sci. Technol. 41 (1987) 31-33.
- [5] C.S. Swindell, N.E. Krauss, S.B. Horwitz, I. Ringel, Biologically active taxol analogues with deleted A-ring side chain substituents and variable C-2' configurations, J. Med. Chem. 34 (1991) 1176-1184.
- [6] B.E. Kilfoyle, L. Sheihet, Z. Zhang, M. Laohoo, J. Kohn, B.B. Michniak-Kohn, Development of paclitaxel-TyroSpheres for topical skin treatment, J. Control. Release 163 (2012) 18-24.
- [7] M.A. Lovich, C. Creel, K. Hong, C.W. Hwang, E.R. Edelman, Carrier proteins determine local pharmacokinetics and arterial distribution of paclitaxel, J. Pharm. Sci. 90 (2001) 1324-1335.
- [8] Y.S. Wang, Q. Jiang, R.S. Li, L.L. Liu, Q.Q. Zhang, Y.M. Wang, J. Zhao, Self-assembled nanoparticles of cholesterol-modified Ocarboxymethyl chitosan as a novel carrier for paclitaxel, Nanotechnology 19 (2008) 145101.
- [9] T. Yang, F.D. Cui, M.K. Choi, J.W. Cho, S.J. Chung, C.K. Shim, D.D. Kim, Enhanced solubility and stability of PEGylated liposomal paclitaxel: In vitro and in vivo evaluation, Int. J. Pharm. 338 (2007) 317-326.
- [10] T.W.J. Steele, C.L. Huang, S. Kumar, E. Widjaja, F.Y.C. Boey, J.S.C. Loo, S.S. Venkatraman, High-throughput screening of PLGA thin films utilizing hydrophobic fluorescent dyes for hydrophobic drug compounds, J. Pharm. Sci. 100 (2011) 4317-4329.
- [11] S.H. Kim, J.P. Tan, K. Fukushima, F. Nederberg, Y.Y. Yang, R.M. Waymouth, J.L. Hedrick, Thermoresponsive nanostructured polycarbonate block copolymers as biodegradable therapeutic delivery carriers, Biomaterials 32 (2011) 5505-5514.
- [12] S.Q. Liu, Y.W. Tong, Y.Y. Yang, Thermally sensitive micelles self-assembled from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-lactide-co-glyco lide) for controlled delivery of paclitaxel, Mol. Biosyst. 1 (2005) 158-165.
- [13] X. Jiang, L. Li, J. Liu, W.E. Hennink, R. Zhuo, Facile fabrication of thermo-responsive and reduction-sensitive polymeric micelles for anticancer drug delivery, Macromol. Biosci. 12 (2012) 703-711.


- [14] X. Wang, Y. Chen, F.Z. Dahmani, L. Yin, J. Zhou, J. Yao, Amphiphilic carboxymethyl chitosan-quercetin conjugate with P-gp inhibitory properties for oral delivery of paclitaxel, Biomaterials 35 (2014) 7654-7665.
- [15] J.H. Kim, Y.S. Kim, S. Kim, J.H. Park, K. Kim, K. Choi, H. Chung, S.Y. Jeong, R.W. Park, I.S. Kim, I.C. Kwon, Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel, J. Control. Release 111 (2006) 228-234.
- [16] Z. Zhang, S.S. Feng, Self-assembled nanoparticles of poly(lactide)--Vitamin E TPGS copolymers for oral chemotherapy, Int. J. Pharm. 324 (2006) 191-198.
- [17] H.F. Liang, C.T. Chen, S.C. Chen, A.R. Kulkarni, Y.L. Chiu, M.C. Chen, H.W. Sung, Paclitaxel-loaded poly(gamma-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer, Biomaterials 27 (2006) 2051-2059.
- [18] P. Lim Soo, J. Cho, J. Grant, E. Ho, M. Piquette-Miller, C. Allen, Drug release mechanism of paclitaxel from a chitosan-lipid implant system: effect of swelling, degradation and morphology, Eur. J. Pharm. Biopharm. 69 (2008) 149-157.
- [19] S.J. Liu, F.J. Chiang, C.Y. Hsiao, Y.C. Kau, K.S. Liu, Fabrication of balloon-expandable self-lock drug-eluting polycaprolactone stents using micro-injection molding and spray coating techniques, Ann. Biomed. Eng. 38 (2010) 3185-3194.
- [20] Y. Wei, Z. Xue, Y. Ye, Y. Huang, L. Zhao, Paclitaxel targeting to lungs by way of liposomes prepared by the effervescent dispersion technique, Arch. Pharm. Res. 37 (2014) 728-737.
- [21] T. Yang, M.K. Choi, F.D. Cui, J.S. Kim, S.J. Chung, C.K. Shim, D.D. Kim, Preparation and evaluation of paclitaxel-loaded PEGylated immunoliposome, J. Control. Release 120 (2007) 169-177.
- [22] M. Zhao, C. Liang, A.M. Li, J. Chang, H.J. Wang, R.M. Yan, J.J. Zhang, J.L. Tai, Magnetic paclitaxel nanoparticles inhibit glioma growth and improve the survival of rats bearing glioma xenografts, Anticancer Res. 30 (2010) 2217-2223.
- [23] G. Saravanakumar, K.H. Min, D.S. Min, A.Y. Kim, C.M. Lee, Y.W. Cho, S.C. Lee, K. Kim, S.Y. Jeong, K. Park, J.H. Park, I.C. Kwon, Hydrotropic oligomer-conjugated glycol chitosan as a carrier of paclitaxel: synthesis, characterization, and in vivo biodistribution, J. Control. Release 140 (2009) 210-217.
- [24] Q. Gu, J.Z. Xing, M. Huang, X. Zhang, J. Chen, Nanoformulation of paclitaxel to enhance cancer therapy, J. Biomater. Appl. 28 (2013) 298-307.
- [25] E.J. Cha, J.E. Kim, C.H. Ahn, Stabilized polymeric micelles by electrostatic interactions for drug delivery system, Eur. J. Pharm. Sci. 38 (2009) 341-346.
- [26] Z. Amoozgar, J.Y. Park, Q.N. Lin, Y. Yeo, Low molecular-weight chitosan as a pH-sensitive stealth coating for tumor-specific drug delivery, Mol. Pharm. 9 (2012) 1262-1270.
- [27] E. Gullotti, Y. Yeo, Beyond the imaging: limitations of cellular uptake study in the evaluation of nanoparticles, J. Control. Release 164 (2012) 170-176.
- [28] E. Gullotti, J. Park, Y. Yeo, Polydopamine-based surface modification for the development of peritumorally activatable nanoparticles, Pharm. Res. 30 (2013) 1956-1967.

- [29] N. Song, W. Liu, Q. Tu, R. Liu, Y. Zhang, J. Wang, Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery, Colloids Surf. B. Biointerfaces 87 (2011) 454-463.
- [30] Z.P. Zhang, S.S. Feng, In vitro investigation on poly(lactide)-Tween 80 copolymer nanoparticles fabricated by dialysis method for chemotherapy, Biomacromolecules 7 (2006) 1139-1146.
- [31] M. Tsai, Z. Lu, M.G. Wientjes, J.L.S. Au, Paclitaxel-loaded polymeric microparticles: Quantitative relationships between in vitro drug release rate and in vivo pharmacodynamics, J. Control. Release 172 (2013) 737-744.
- [32] X.L. Tang, S.Y. Cai, R.B. Zhang, P. Liu, H.B. Chen, Y. Zheng, L.L. Sun, Paclitaxel-loaded nanoparticles of star-shaped cholic acid-core PLA-TPGS copolymer for breast cancer treatment, Nanoscale Res. Lett. 8 (2013).
- [33] P.P. Lv, W. Wei, H. Yue, T.Y. Yang, L.Y. Wang, G.H. Ma, Porous quaternized chitosan nanoparticles containing paclitaxel nanocrystals improved therapeutic efficacy in non-small-cell lung cancer after oral administration, Biomacromolecules 12 (2011) 4230-4239.
- [34] R.K. Averineni, G.V. Shavi, A.K. Gurram, P.B. Deshpande, K. Arumugam, N. Maliyakkal, S.R. Meka, U. Nayanabhirama, PLGA 50:50 nanoparticles of paclitaxel: Development, in vitro anti-tumor activity in BT-549 cells and in vivo evaluation, Bull. Mater. Sci. 35 (2012) 319-326.
- [35] D.M. Stevens, K.A. Gilmore, E. Harth, An assessment of nanosponges for intravenous and oral drug delivery of BCS class IV drugs: Drug delivery kinetics and solubilization, Polym. Chem. 5 (2014) 3551-3554.
- [36]B. Senthil Kumar, K.L. Senthil Kumar, D.C. Prem Anand, M. Saravanakumar, R. Thirumurthy, Design and development of paclitaxel loaded microspheres for targeted drug delivery to the colon, Int. J. of Biomed. Res. 1 (2010) 80-98.
- [37] J.G.H. Santosh B Totiger, Paclitaxel loaded poly(sebacic acid-co-ricinoleic ester anhydride)-based nanoparticles, Asian J. Pharm. 5 (2011) 225-230.
- [38] B.A. Malavaud, C. LeVisage, N. Rioux-Leclercq, M. Haller, P. Breton, K. Leong, Efficacy of paclitaxel released from bioadhesive polymer microspheres on model superficial bladder cancer, J. Urol. 171 (2004) 188-188.
- [39] C.L. Huang, T.W.J. Steele, E. Widjaja, F.Y.C. Boey, S.S. Venkatraman, J.S.C. Loo, The influence of additives in modulating drug delivery and degradation of PLGA thin films, Npg Asia Materials 5 (2013).
- [40] Y. Hong, S.H. Ye, A.L. Pelinescu, W.R. Wagner, Synthesis, characterization, and paclitaxel release from a biodegradable, elastomeric, poly(ester urethane)urea bearing phosphorylcholine groups for reduced thrombogenicity, Biomacromolecules 13 (2012) 3686-3694.


Supporting Figures


Supporting Fig. 1. Paclitaxel (PTX) solubility in (a) PBS, (b) 0.2% Tween 80/PBS, and (c) 50% FBS/PBS determined in an alternative way. PTX was added to each medium in the amount indicated in the x-axis as a 10 mg/mL stock solution in DMSO. After 24h (7 or 24h for 50% FBS/PBS) incubation at 37°C, solutions were centrifuged and filtered to remove precipitated PTX and analyzed with HPLC.

Supporting Fig. 2. Micrographs of PTX/NPs (taken with a FEI Tecnai T20 transmission electron microscope after negative staining with 1% phosphotungstic acid) and PNCs (taken with a FEI Nova NanoSEMTM scanning electron microscope).

Supporting Fig. 3. Mass balance after release kinetics studies of PTX/NPs in media containing PBS, FBS, or Tween 80 (See Fig. 2).

Supporting Fig. 4. Kinetics of PTX precipitation in PBS. To determine how quickly PTX precipitated in PBS (pH 7.4) at 37°C, PTX solution in PBS at a concentration of 20 μ g/mL was prepared by diluting PTX stock solution in 0.2% Tween 80/PBS with PBS, aliquoted by 1 mL, and incubated at 37°C with shaking. At predetermined time points, 3 aliquots were taken and centrifuged at 3,000 rpm for 5 min. The supernatants were additionally centrifuged at 10,000 rpm (20 min) and filtered with 0.45 μ m PVDF syringe filters and analyzed with HPLC. Dotted line indicates PTX solubility in PBS (0.2 μ g/mL).