Antenatal Hypoxia Induces Epigenetic Repression of Glucocorticoid Receptor and Promotes Ischemic-Sensitive Phenotype in the Developing Heart

By

Fuxia Xiong^{1,2}, Thant Lin³, Minwoo Song², Qingyi Ma², Shannalee R. Martinez², Juanxiu Lv^{1,2}, Eugenia MataGreenwood², Daliao Xiao², Zhice Xu^{1,2} and Lubo Zhang^{1,2}*

¹Institute for Fetology and Reproductive Medicine Center, First Hospital of Soochow University,

Suzhou, China; ²Center for Perinatal Biology, Department of Basic Sciences, Loma Linda

University School of Medicine, Loma Linda, California USA; ³Department of Pediatrics, Loma

Linda University School of Medicine, Loma Linda, California USA

Short title: Glucocorticoid receptor and heart development.

*Author for correspondence:

Lubo Zhang, Ph.D. Center for Perinatal Biology Division of Pharmacology Department of Basic Sciences Loma Linda University School of Medicine Loma Linda, CA 92350 Tel: 909-558-4325 Fax: 909-558-4029 Email: <u>lzhang@llu.edu</u> Supplementary Table I. Primer sequences.

	Forward	Reverse	
exon 1 ₄	AAGCAACACCGTAACACCTT	AGAAGCAGCAGCCACTGA	
exon 1 ₅	CATGCAACTTCCTCCGAGT		
exon 17	GGAGCCTGGGAGAAGAGAAA		
exon 1 ₁₁	GCCGCAGAGAACTCAACAG		
exon 1_{10}	CACGCCGACTTGTTTATC	TCTGCTGCTTGGAATCTG	
exon 1 ₆	ACCTGG CGG CAC GCG AGT	GCAGCCACTGAGGGCGAAGA	
exon 1 ₈	GACAGTCGCCAACAGGTTAA	TGAGAAGCAGCAGCCACT	
exon 19	GTCAGTGCCTGGAGCCCGAG	AGCAGCCACTGAGGGCGAAG	
GR total	AGGTCTGAAGAGCCAAGAGTTA	TGGAAGCAGTAGGTAAGGAGAT	
β-Actin	TCAGGTCATCACTATCGGCAAT	ACTGTGTTGGCATAGAGGTCTT	
GR-IP-14	AAAGAACGACTCGGGTTTGA	CTCTGCCTGACCTCTTGGAG	
GR-IP-15	ACAGCTGGACGGAGCTAAAA	CCCGAATCTTGACATTTGCT	
GR-IP-1 ₆	GGGTTCTGCTTTGCAACTTC	GAGAGGGTCAGCGCATACAT	
GR-IP-17	GACACACTTCGCGCAACTC	CACCCAAGGAACGAGAAAAA	
EMSA 1 ₄ -CRE UM	CGACTCGGGTTTGACGCCAAAGAGCAC	GTGCTCTTTGGCGTCAAACCCGAGTCG	
EMSA 1 ₄ -CRE M	CGACTCGGGTTTGAmCGCCAAAGAGCAC	GTGCTCTTTGG _m CGTCAAACCCGAGTCG	
EMSA 15-CRE UM	GAGCTAAAAGCTGACGTTTTAAAGATG	CATCTTTAAAACGTCAGCTTTTAGCTC	
EMSA 15-CRE M	GAGCTAAAAGCTGA _m CGTTTTAAAGATG	CATCTTTAAAAmCGTCAGCTTTTAGCTC	
EMSA 1 ₆ -Sp1 UM	GATCGGGGCGCGGGGGGGGGGGGGGGGG	ACCCACCCTCCCCGCGCCCCGATC	
EMSA 16-Sp1 M	GAT _m CGGGG _m CG _m CGGGGGGGGGGGGGGGGGG	ACCCACCCTCCCCmCGmCGCCCmCGATC	
EMSA 17-Sp1 UM	ACCCACGGGGCGGGCTCCCGAGCGG	CCGCTCGGGAGCCCGCCCGTGGGT	
EMSA 17-Sp1 M	ACCCAmCGGGGGmCGGGGCTCCmCGAGmCGG	C _m CGCT _m CGGGAGCC _m CGCCC _m CGTGGGT	

Animal	HR	LVDP	dP/dt _{max}	dP/dt _{min}	CF
groups	(beat/min)	(mmHg)	(mmHg/s)	(mmHg/s)	(ml/min/g)
N _{-Aza} (n=8)	317±9.5	126.7±5.1	4468±116	2692±86	10.5 ± 0.9
H _{-Aza} (n=9)	320±13.5	125.4±8.8	4432±150	2573±66	9.6±0.7
N _{+Aza} (n=8)	298±11.0	133.2±1.9	4543±183	2681±79	8.8±0.6
H _{+Aza} (n=8)	295±17.6	130.6±4.1	4698±111	2549±58	8.3±0.7

Supplementary Table II. Pre-ischemic baseline values of left ventricle functional parameters

Pregnant rats were exposed to normoxia (N) or hypoxia (H) at 10.5% O₂ from day 15 to day 21 of gestation. Newborn rats were injected with saline (-AZA) or 5-aza-2'-deoxycytidine (+AZA) (1 μ g/g/day, *i.p.*) at postnatal day 1 and day 3. Hearts were isolated from 4 week old offspring and subjected to 45 minutes of ischemia and 30 minutes of reperfusion in a Langendorff preparation. HR, heart rate; LVDP, left ventricular developed pressure; dP/dt_{max}, maximal rate of contraction; dP/dt_{min}, maximal rate of relaxation; CF, coronary flow.

Supplementary Figure I

Supplementary Figure I. Effects of methylation on binding of CREB and Sp1 to GR promoter. Nuclear extracts (NE) from fetal hearts were incubated with double-stranded oligonucleotide probes containing unmethylated (UM) or methylated (M) CRE at GR promoter 1_4 and 1_5 (A), or Sp1 binding site at GR promoter 1_6 (B) and 1_7 (C) in the absence or presence of antibodies (Ab) against CREB or Sp1. Cold competition (CC) was performed with unlabeled competitor oligonucleotide at a 100-fold molar excess. Free oligo: no nuclear extracts were added. S, shift; SS, super-shift.

Supplementary Figure II

Supplementary Figure II. Diagrammatic representation of GR promoter constructs. Panel A shows site-directed deletion of $CRE_{.4408}$, $CRE_{.3896}$, $Sp1_{.3425}$, $Egr-1_{.3361}$, $Sp1_{.3034}$ and $Egr-1_{.2996}$ in GR promoter 1_4 , 1_5 , 1_6 and 1_7 constructs. Panel B shows wild type GR promoter 1_6 reporter construct (WT-P1₆) and constructs with a dual insertion of EcoR1 and Pmel site (P1₆-EcoRI-Pmel), an insertion of CpG methylation at Sp1 (Sp1-mCpG), and unmethylation at Sp1 (Sp1-CpG).

Supplementary Figure III

Supplementary Figure III. Dexamethasone protected the heart from ischemia and reperfusion injury in 4 week old rats. Four week old rats were injected with either saline (control) or dexmethasone (DEX, 1 mg/kg/day, *i.p.*) 24 hours prior to the heart isolation. Hearts were subjected to 45 minutes of ischemia and 30 minutes of reperfusion in a Langendorff preparation. LVDP, left ventricle developed pressure; LVEDP, left ventricle end-diastolic pressure. Data are mean \pm SEM, n = 5. * P < 0.05, DEX vs. control.