Systematic Evolution and Study of UAGN Decoding tRNAs in a Genomically Recoded Bacteria

Nanxi Wang,¹ Xin Shang,¹ Ronald Cerny,¹ Wei Niu,^{*2} Jiantao Guo^{*1}

- 1. Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States.
- 2. Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States.

*To whom correspondence should be addressed: jguo4@unl.edu and wniu2@unl.edu

Supporting Information

Table of Contents

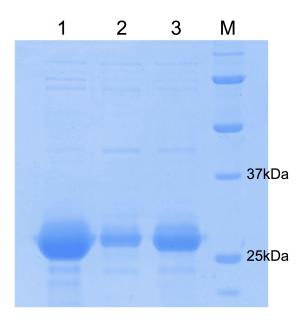
I. Primers for library construction	
II. Plasmids	
III. Additional data	
1. Figure S1	
2. Figure S2	
3. Figure S3	
4. Figure S4	
5. Figure S5	
6. Figure S6	0
7. Figure S7	1
7. Figure S8	2
7. Figure S9	3
8. Table S1 14	4

I Primers for library construction.

Library-NCUA11: Lib-F1: CATGCCATGGGTTCCACAGGGTAGCCAGCAGC Library-NCUA11-R1: ATTCGATCTACATGATCAGGT Library-NCUA11-F2: TCATGTAGATCGAATNNNNNNCUANNNNGTTCAGCCGGGTTAGATTC Lib-R2: CCGCTCGAGCAGAACATATCCATCGCGTCCGC

Library-CUA10 Lib-F1: CATGCCATGGGTTCCACAGGGTAGCCAGCAGC Library-CUA10-R1: ATTCGATCTACATGATCAGGT Library-CUA10-F2: TCATGTAGATCGAATNNNNNCUANNNNGTTCAGCCGGGTTAGATTC Lib-R2: CCGCTCGAGCAGAACATATCCATCGCGTCCGC

Primers for mutagenesis.


pREP-BocLysRS-UAGN: 5'-CGCTCTAGACAATTGGTGCAC-3' 5'-CTCATGGAAAACGGTGTAACAAG-3' 5'-ACCGTTTTCCATGAG<u>TAGN</u>ACTGAAACGTTTTCATCGCTCTG-3' 5'-CCACTCATCGCAGTACTGTTG-3'

pLei-GFP_{UV}-Asn149UAGN-tRNA-UAGN-wt (N = A, G, U, or C): 5'-GAGAAATTACATATGAGTAAAG-3' 5'-GTGTGAGTTATAGTTGTACTC-3' 5'-GTACAACTATAACTCACAC**TAGA**GTATACATCACGGCAGAC-3' 5'-GTACAACTATAACTCACAC**TAGG**GTATACATCACGGCAGAC-3' 5'-GTACAACTATAACTCACAC**TAGT**GTATACATCACGGCAGAC-3' 5'-GTACAACTATAACTCACAC**TAGC**GTATACATCACGGCAGAC-3' 5'-GTACAACTATAACTCACAC**TAGC**GTATACATCACGGCAGAC-3' 5'-GATGGAGCTCTTTGTAGAGTTC-3'

II Plasmids

pBK-BocLysRS	P _{gins} BocLysRS, Kan ^R , ColE1
pBK-AbkRS	P_{gins} AbkRS, Kan ^R , ColE1
pBK-ONBKRS	P _{gins} ONBKRS, Kan ^R , ColE1
pREP-BocLysRS-UAGA	P _{gins} BocLysRS, Tet ^R , Cm ^R (UAGA98), p15a
pREP-BocLysRS-UAGU	P _{gins} BocLysRS, Tet ^R , Cm ^R (UAGU98), p15a
	-
pREP-BocLysRS-UAGG	P _{glnS} BocLysRS, Tet ^R , Cm ^R (UAGG98), p15a
pREP-BocLysRS-UAGC	P _{gInS} BocLysRS, Tet ^R , Cm ^R (UAGC98), p15a
pGFP _{uv} -UCUA-wt	T5 GFP _{UV} (Asn149UAGA), Ipp tRNA _{UCUA} , Cm ^R , p15a
•	
pGFP _{UV} -ACUA-wt	T5 GFP _{UV} (Asn149UAGA), Ipp tRNA _{ACUA} , CmR ^{i} p15a
pGFP _{uv} -CCUA-wt	T5 GFP _{UV} (Asn149UAGA), lpp tRNA _{CCUA} , Cm ^R , p15a
pGFP _{uv} -GCUA-wt	T5 GFP _{UV} (Asn149UAGA), lpp tRNA _{GCUA} , Cm ^R , p15a
	$T \in C \subseteq \mathbb{R}$ (Appl 4004 CA) $C = \mathbb{R}^{R} = 1 \subseteq \mathbb{R}$
pGFP _{uv} -UAGN	T5 GFP _{uv} (Asn149UAGA), Cm ^R , p15a
pGFP _{uv} -NCUA-X	T5 GFP _{UV} (Asn149UAGA), lpp tRNA hit-X, Cm ^R , p15a
pGFP _{uv} -UAGA-BocLysRS	T5 GFP _{UV} (Asn149UAGA), P _{gInS} BocLysRS, Cm ^R , p15a
pGFP _{UV} -UAGU-BocLysRS	T5 GFP _{UV} (Asn149UAGU), P _{gInS} BocLysRS, Cm ^R , p15a
pGFP _{UV} -UAGG-BocLysRS	T5 GFP _{UV} (Asn149UAGG), P _{ginS} BocLysRS, Cm ^R , p15a
pGFP _{uv} -UAGC-BocLysRS	T5 GFP _{UV} (Asn149UAGC), P _{gInS} BocLysRS, Cm ^R , p15a
	$T_{\rm E} \cap C_{\rm E}$ (Assolution) $\Gamma_{\rm E} = \Gamma_{\rm E} \circ \Gamma_{\rm E} \circ \Gamma_{\rm E}$
pGFP _{uv} -UAG-BocLysRS	T5 GFP _{UV} (Asn149UAG), P _{gInS} BocLysRS, Cm ^R , p15a
pBK-library-NCUA11	Ipp tRNA _{NCUA} library, Kan ^R , ColE1
pBK-Library-CUA10	Ipp tRNA _{CUA} library, Kan ^R , CoIE1
pBK-tRNA-hit	Ipp tRNA _{NCUA} hit, Kan ^R , CoIE1

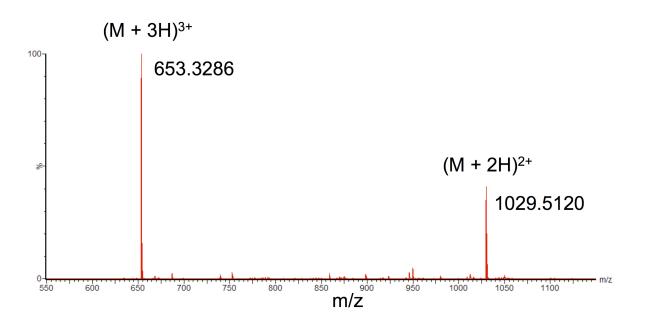
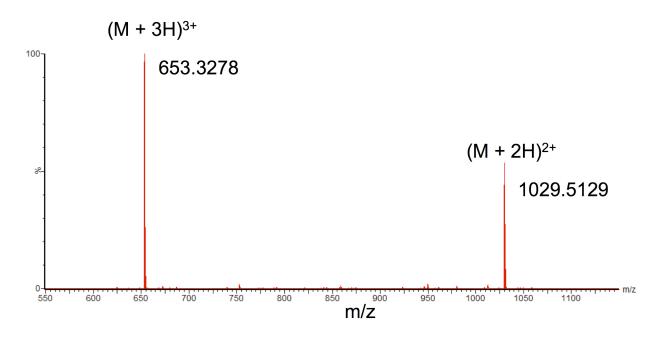

III Additional data

Figure S1. Purification of GFPuv mutants.

Proteins were purified using Ni Sepharose 6 Fast Flow resin. Lane 1, purified mutant GFPuv protein that was obtained from the suppression of an UAGA codon by tRNA hit UAGA-1; Lane 2, purified mutant GFPuv protein that was obtained from the suppression of an UAGU codon by tRNA hit UAGU-1; Lane 3, purified mutant GFPuv protein that was obtained from the suppression of an UAGG codon by tRNA hit UAGG-2; lane 4, molecular weight marker.

LEYNYNSH<u>Boc-Lys</u>VYITADK

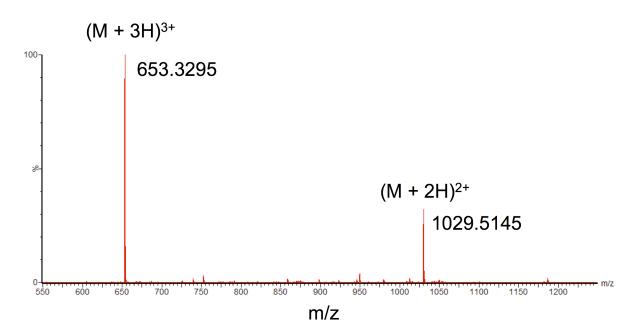

Figure S2. Mass spectrometry analysis of GFPuv containing Boc-Lys at position 149 (suppression of an UAGU codon).

The amino acid sequence of the peptide fragment, LEYNYNSH**Boc-Lys**VYITADK, from mutant GFPuv containing Boc-Lys is shown on top. Two mass speaks were observed. The $(M + 2H)^{2+}$ peak corresponds to LEYNYNSH**Boc-Lys**VYITADK that contains an intact Boc-Lys residue at position 149. The $(M + 3H)^{3+}$ peak corresponds to LEYNYNSH**K**VYITADK that contains a lysine residue at position 149 due to the loss of Boc group under the mass spectrometry conditions. (**Note**: The Boc-LysRS cannot charge the tRNA with lysine. The observed peptide that contains a lysine at position 149 must be derived from the cleavage of the Boc group.)

Theoretical monoisotopic $(M + 3H)^{3+}$ ion: 653.3272 Observed monoisotopic $(M + 3H)^{3+}$ ion: 653.3286

Theoretical monoisotopic $(M + 2H)^{2+}$ ion: 1029.5131 Observed monoisotopic $(M + 2H)^{2+}$ ion: 1029.5120

LEYNYNSH<u>Boc-Lys</u>VYITADK


Figure S3. Mass spectrometry analysis of GFPuv containing Boc-Lys at position 149 (suppression of an UAGG codon).

The amino acid sequence of the peptide fragment, LEYNYNSH**Boc-Lys**VYITADK, from mutant GFPuv containing Boc-Lys is shown on top. Two mass speaks were observed. The $(M + 2H)^{2+}$ peak corresponds to LEYNYNSH**Boc-Lys**VYITADK that contains an intact Boc-Lys residue at position 149. The $(M + 3H)^{3+}$ peak corresponds to LEYNYNSH**K**VYITADK that contains a lysine residue at position 149 due to the loss of Boc group under the mass spectrometry conditions. (**Note**: The Boc-LysRS cannot charge the tRNA with lysine. The observed peptide that contains a lysine at position 149 must be derived from the cleavage of the Boc group.)

Theoretical monoisotopic $(M + 3H)^{3+}$ ion: 653.3272 Observed monoisotopic $(M + 3H)^{3+}$ ion: 653.3278

Theoretical monoisotopic $(M + 2H)^{2+}$ ion: 1029.5131 Observed monoisotopic $(M + 2H)^{2+}$ ion: 1029.5129

LEYNYNSH<u>Boc-Lys</u>VYITADK

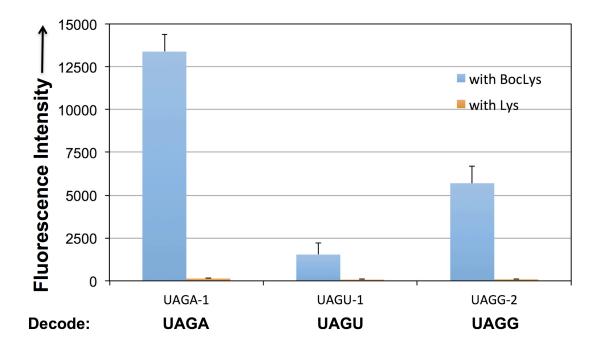
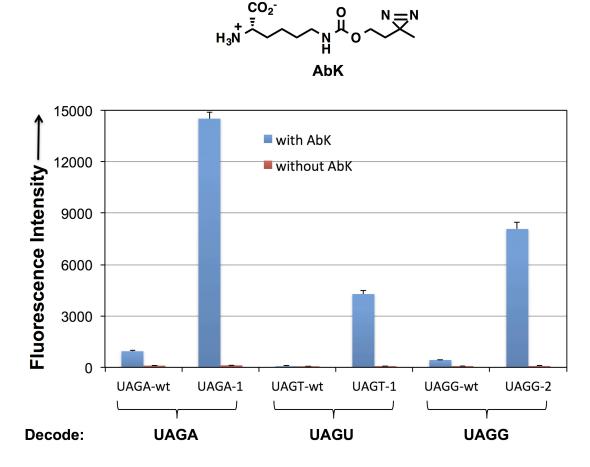
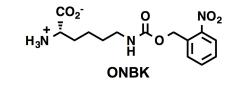


Figure S4. Mass spectrometry analysis of GFPuv containing Boc-Lys at position 149 (suppression of an UAGA codon).

The amino acid sequence of the peptide fragment, LEYNYNSH**Boc-Lys**VYITADK, from mutant GFPuv containing Boc-Lys is shown on top. Two mass speaks were observed. The $(M + 2H)^{2+}$ peak corresponds to LEYNYNSH**Boc-Lys**VYITADK that contains an intact Boc-Lys residue at position 149. The $(M + 3H)^{3+}$ peak corresponds to LEYNYNSH**K**VYITADK that contains a lysine residue at position 149 due to the loss of Boc group under the mass spectrometry conditions. (**Note**: The Boc-LysRS cannot charge the tRNA with lysine. The observed peptide that contains a lysine at position 149 must be derived from the cleavage of the Boc group.)


Theoretical monoisotopic $(M + 3H)^{3+}$ ion: 653.3272 Observed monoisotopic $(M + 3H)^{3+}$ ion: 653.3295

Theoretical monoisotopic $(M + 2H)^{2+}$ ion: 1029.5131 Observed monoisotopic $(M + 2H)^{2+}$ ion: 1029.5145


Figure S5. Genetic incorporation of Boc-Lys versus Lys.

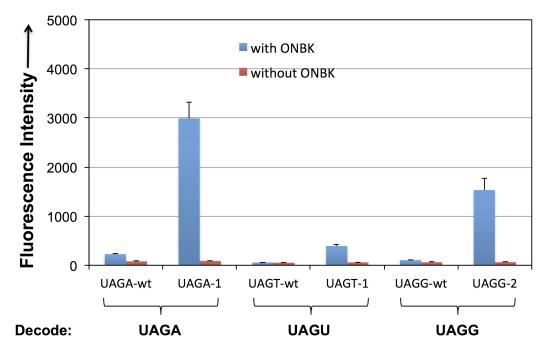
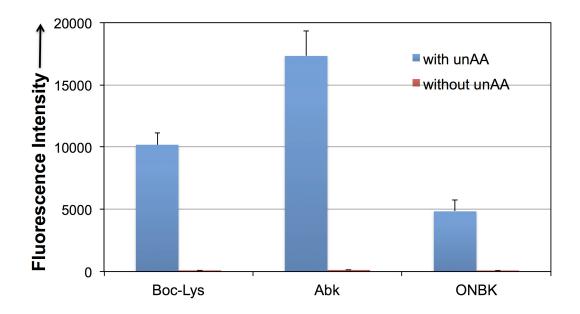
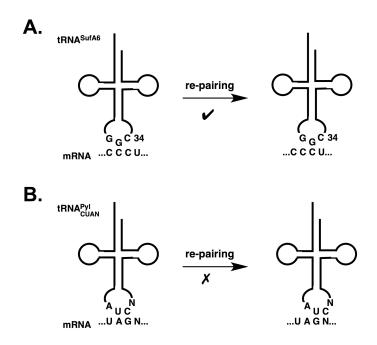

Fluorescence readings of *E. coli* C321. Δ A cells expressing the evolved tRNA^{Pyl}_{NCUA} mutants, each co-expressed with BocLysRS and corresponding GFP_{UV}-Asn149UAGN. The expression tests were conducted in the presence of either 5 mM BocLys or 5 mM Lys. The results indicated that the BocLysRS is unable to incorporate Lys and that the observed Lys residues in the mass spectrometry analyses were from the degradation of Boc-Lys. Fluorescence intensity was normalized to cell growth. Each data point is the average of triplicate measurements with standard deviation.

Figure S6. Incorporation of AbK using the evolved tRNA^{Pyl}_{NCUA} variants.


Fluorescence readings of *E. coli* C321. Δ A cells expressing tRNA^{Pyl}_{NCUA}-wt or the evolved tRNA^{Pyl}_{NCUA} mutants, each coexpressed with AbKRS (a pyrrolysyl-tRNA synthetase mutant that specifically charges tRNA^{Pyl} with Abk) and corresponding GFP_{UV}-Asn149UAGN. The expressions were conducted either in the presence or in the absence of 1 mM AbK. Fluorescence intensity was normalized to cell growth. Each data point is the average of triplicate measurements with standard deviation. AbK, 3'-azibutyl-N-carbamoyl-lysine.


Figure S7. Incorporation of ONBK using the evolved tRNA^{Pyl}_{NCUA} variants.

Fluorescence readings of *E. coli* C321. Δ A cells expressing tRNA^{Pyl}_{NCUA}-wt or the evolved tRNA^{Pyl}_{NCUA} mutants, each coexpressed with ONBKRS (a pyrrolysyl-tRNA synthetase mutant that specifically charges tRNA^{Pyl} with ONBK) and corresponding GFP_{UV}-Asn149UAGN. The expressions were conducted either in the presence or in the absence of 1 mM ONBK. Fluorescence intensity was normalized to cell growth. Each data point is the average of triplicate measurements with standard deviation. ONBK, *o*-nitrobenzyl-oxycarbonyl-N_E-L-lysine.

Figure S8. Incorporation of Boc-Lys, Abk, and ONBK in response to amber codon.

Fluorescence readings of *E. coli* C321. Δ A cells expressing tRNA^{Pyl}_{CUA}, GFP_{UV}-Asn149UAG, and a PylRS variant of interest (BocLysRS, AbkRS, or ONBKRS). The expressions were conducted either in the presence or absence of an unAA of interest (Boc-Lys, 5 mM; ABK, 1 mM; ONBK, 1 mM). Fluorescence intensity was normalized to cell growth. Each data point is the average of triplicate measurements with standard deviation. Boc-Lys, *N* ϵ -(tert-butyloxy-carbonyl)-L-lysine; AbK, 3'-azibutyl-N-carbamoyl-lysine; ONBK, *o*-nitrobenzyl-oxycarbonyl-N ϵ -L-lysine.

Figure S9. Anticodon-mRNA re-pairing in the P site.

(A) A favorable re-pairing of $tRNA^{SufA6}$ in the +1 frame; (B) An unfavorable re-pairing of $tRNA_{NCUA}^{Pyl}$ in the +1 frame.

Codon	tRNA variants –	Positions				
		29-31	32,33	33.5	37, 38	39-41
	UAGA-4	CGG	CU	U	ΑU	CUU
UAGA	UAGA-5	GGG	CU	U	ΑU	ССС
	UAGA-6	G G A	CU	U	ΑU	CUC
UAGU	UAGU-4	UGG	CU	А	ΑU	CUU
UAGG	UAGG-4	UGG	CU	А	ΑU	CUU

Table S1. Additional tRNA Pyl_{NCUA} mutants with improved UAGN decoding activity.Sequences of each tRNA Pyl_{NCUA} variant at randomized positions are listed.

Notes:

(1) UAGU-4 AND UAGG-4 are converged into the same sequence.

(2) The tRNA sequences are based on the sequences of the coding DNA.