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ABSTRACT

Diffusion models to a threshold can explain with great precision performance and response time distributions in binary de-
cisions. One challenging problem for decision models is to account for the relation between decision time and confidence.
During the decision formation, ramping neurons represent evidence and it is assumed that time should be estimated in sepa-
rate dedicated circuits. Here we explain how decision time and confidence can be read-out from the activity of neurons that
integrate evidence during decision making. We propose a simple mechanism based on basic theoretical principles. In a diffu-
sion process, time and variability are correlated. Hence, measuring the variance of firing rates at the moment of the decision
provides a natural way to measure response time. This, in turn can be used to compute confidence. Here we show that in
fact confidence can be read-out from the ensemble variability of a pool of weakly-connected decision neurons. We explicitly
construct a neuronal architecture capable of estimating time, and show that this model can explain subtle empirical findings
of the relation of time and confidence in human decision making experiments. Our results also make concrete predictions on
how population activity of decision neurons should relate to response time and confidence.
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Figure S1. Probability density of the evidence accumulated with a drift diffusion process as a function of time. The mean and the enveloping standard
deviation are plotted as solid and dashed lines respectively.

A Variance of the state of a diffusion process depends on time
The temporal evolution of variables corrupted by noise is described by stochastic dynamical equations of the form:

dx
dt

= a(x, t)+b(x, t)ξ (t) (1)

where a and b are the deterministic functions and ξ is a stochastic variable. Depending on the stochastic force’s (also called
noise) distribution, the probability density p(x, t|x0, t0) evolves differently. In particular, if ξ (t) is normally distributed with
independent samples at different times, the probability density evolves following the Fokker-Planck master equation

∂ p(z, t|y, t ′)
∂ t

=−∑
i

∂
∂ zi

[
Ai(z, t)p(z, t|y, t ′)

]
+∑

i, j

1
2

∂ 2

∂ zi∂ z j

[
Bi j(z, t)p(z, t|y, t ′)

]
(2)

where A controls drift and B diffusion. The case without drift and constant diffusion is simply a Wiener process. The probabil-
ity density p(x, t|x0, t0) takes the form of a gaussian distribution with variance proportional to t − t0. Adding a constant drift
does not change the variance’s evolution (Fig. S1). If A or B depend on x, the probability density follows other dynamics such
as Ornstein-Ulhenbeck, or non-linear diffusion. Both of these present correlations between elapsed time and the probability
distribution’s dispersion. For a detailed deduction refer to1 chapter 3.
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Figure S2. A. Neural perceptual decision network sketch for a single module from 3. Populations are divided into excitatory selective (blue), excitatory
non selective (white) and inhibitory (red). The progression shows the dimensionally reduced meanfield model. B. Firing rate threshold crossing detection
mechanism from 7. Populations A and B compete, when one crosses a threshold of activity the first layer of interneurons is activated. This first layer inhibits
the second layer and thus releases population DA or DB in order for it to become active. Note that DA and DB receive direct connections from the
competing layer whilst we propose another mechanism for DA and DB to become active once A and B surpass the threshold. The interneuron populations
that mediate the detection are proposed to be in the Caudate Nucleus and the Superior Colliculus in the Basal Ganglia.

B Neural implementation

We base our neural decision model on an extensively studied model of perceptual decision making in which four populations
of neurons interact2. Two pools of pyramidal neurons are sensitive to the sensory input of the decision process, while the
others, one pool of pyramidal neurons and one pool of interneurons, are non selective. All pools are fully connected with each
other through AMPA, NMDA and GABAA mediated synapses (Fig. S2.A). The pyramidal neurons outward connections target
AMPA and NMDA receptors while the interneurons target GABAA. Furthermore, all pools of neurons receive background
Poisson spike trains that target AMPA receptors and yield a baseline of synaptic input current. The slow NMDA channel
dynamics, along with balanced inhibition and positive recurrent connections, lead the whole system to a winner take all state
where one of the selective pools of neurons becomes active and the other is inhibited. The network of single neurons and
their synapses can be reduced to an effective two-dimensional meanfield model where the fractions of open NMDA channels
drive the decision process3,4 (Fig. S2.A). The complete deduction can be found in3. Note that the four populations with three
neurotransmitter channel dynamics were reduced to two populations with a single effective NMDA channel opening dynamic.
Thus these populations are a mixture of pyramidal and interneurons, and as such follow an altered input-output relation (i.e.
output firing rate as a function of input current). Furthermore, the background synaptic input, that is a vital part of the model,
is included in the meanfield as dynamic Ornstein-Ulhenbeck process5 plus a fixed value. In the numerical simulations, an
exact update method is used to sample the Ornstein-Ulhenbeck noise (Refer to Eq. E-12b in Gillespie 19926).

If after the stimulus presentation, population 1 has increased firing rate while 2 has baseline activity, then option 1 is
selected. The firing rate of each population can be interpreted as the accumulated evidence in favor of each option, and the
selection takes place after an activity threshold is crossed. The threshold crossing can be signaled by a separate bursting
population that only fires once one of the competing populations surpasses a certain level of activity. Lo and Wang7 proposed
a possible implementation, schematically shown in Fig. S2.B. In Lo’s implementation, populations A and B integrate sensory
evidence and compete with each other. If, for example, A surpasses a threshold of activity, it activates population A1. A1 in
turn inhibits A2, which is normally active due to background input. As A2 is silenced, inhibition on DA is released, allowing
the direct connection from A to produce a burst of activity in DA. We use a simplified implementation, where DA and DB
become active due to background input, and not by direct connections from the competition layer, once the inhibition is
released.
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Figure S3. Extended neuronal implementation with the competition (A and B), threshold crossing detection (L and U) and counting layers (D, H and
C). All modules are interconnected although the connections are not depicted here. We propose that all populations receive different levels of background
synaptic input. This background allows the second layer of the modules to have high baseline activity, and also allows the third layer of each module to have
high activity once the inhibition from the second layer disappears.

We propose an ensemble network model of N = 100 modules of these decision pools that are weakly connected with each
other. A crucial aspect of the model is how it determines the selected option. In the single module case, each population’s
firing rate could be interpreted as the evidence in favor of an alternative. In the multi module case, the mean across populations⟨
ρk

i (t)
⟩

k could serve as the evidence in favor of option i. It is presently unclear how this computation could take place but
there is evidence supporting normalization as a possible neural computation8. Alternatively, the decision could be signaled
after over half the modules have crossed a threshold of activity. The simulations shown in the main text use the latter criterion
but both criteria yield almost the same results.

The neural implementation is divided into:

1. The competition layer

2. The threshold crossing detection layer

3. The counting layer

The competition layer is made up by the neural populations that receive sensory input and compete in an attractor neural
network (ANN) fashion (Fig. 1.A and Fig. S2.A). This layer is the heart of the entire decision model. The activity of each
population can be artificially read (i.e. not using a neural mechanism) in order to detect the selected option and the inter
module dispersion, σdv. We go further by addressing the problem of “how could the decision be detected and σdv be read with
neurons?”. This is done by extending the competition layer with the threshold crossing detection and the counting layers (Fig.
S3).

The detailed dynamics that the competition layer obey are detailed in table 1.

Table 1. The competition layer
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A Model Summary
Populations N identical modules with two populations, A and B, each. Ak is module’s k, A population
Topology Excitatory recurrent connections and inhibitory lateral connections within modules. Modules are inter-

connected with excitatory (inhibitory) connections if one each module’s population is the of the same
(different) kind, i.e A with A or B with B.

Connectivity —
Neuron model Meanfield rate model governed by a fixed synaptic input - firing rate output relation.
Channel models Instantaneous AMPA and GABAA channel dynamics (i.e. fraction of channels open proportional to

presynaptic firing rate). Detailed NMDA channel dynamics.
Synapse model Continuous current dependent on the fraction of NMDA channels open or the firing rate, if an interneu-

ron.
Plasticity —
Input Two sensory stimuli, one given to all A populations and the other to all B populations. Background

synaptic bombardment given by a constant current plus an Ornstein-Ulhenbeck process
Measurements Firing rate, number of populations A and B that crossed an activity threshold, inter module STD,

number of populations A and B with firing rate between two levels of activity

B Populations
Name Elements Size
A Meanfield competition approximation 1 per module
B Meanfield competition approximation 1 per module

C Connectivity
Name Source Target Pattern
AA Ak Ak′ weight 0.2609(1− IC(1−1/N)) if k = k′, 0.2609(IC/N) otherwise
BB Bk Bk′ weight 0.2609(1− IC(1−1/N)) if k = k′, 0.2609(IC/N) otherwise
AB Ak Bk′ weight −0.0497(1− IC(1−1/N)) if k = k′, −0.0497(IC/N) otherwise
BA Bk Ak′ weight −0.0497(1− IC(1−1/N)) if k = k′, −0.0497(IC/N) otherwise

D Neuron and Synapse Model
Name Meanfield competition approximation
Type Firing rate, NMDA channel

Dynamic equa-
tions

∂ sk
i (t)
∂ t

=−
−sk

i (t)
τNMDA

+ γρk
i (t)

(
1− sk

i (t)
)

ρk
i (t) = Φ

[(
N

∑
k′=1

Jkk′
ii sk′

i (t)− Jkk′
i j sk′

j (t)

)
+ Ik

iext(t)

]

Φ(x) =
2701/nC x+108Hz

1− exp [−0.154s(2701/nC x+108Hz)]
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E Input

Dynamic equa-
tions Ik

iext(t) = Ik
istim(t)+ IBackground + Ik

inoise(t)

IBackground = 0.3255nA

Ik
inoise(t +dt) = (1−dt/τnoise)Ik

inoise(t)+η(t)
√

0.5∗ (1− exp(2dt/τnoise))0.02nA

Table 2. Threshold crossing detection layer

A Model Summary
Populations N independent modules. Populations L1(A/B), L2(A/B), L3(A/B) and U1(A/B), U2(A/B), U3(A/B)
Topology Independent branches to deeper layers.
Connectivity —
Neuron model Meanfield rate model governed by a fixed synaptic input - firing rate output relation.
Channel models Instantaneous AMPA and GABAA channel dynamics (i.e. fraction of channels open proportional to

presynaptic firing rate). Detailed NMDA channel dynamics.
Synapse model Continuous current dependent on the fraction of NMDA channels open or, if in the first two layers, the

presynaptic firing rate.
Plasticity —
Input Output from populations Ak and Bk reach the first layer. The second and third layer receive background

synaptic bombardment.
Measurements —

B Populations
Name Elements Size
L1(A/B), L2(A/B), U1(A/B), U2(A/B) Interneuron meanfield approximation 1 per module
L3(A/B) and U3(A/B) Pyramidal neuron meanfield approximation 1 per module

C Connectivity
Name Source Target Pattern
competition to L1 Ak (Bk) L1Ak (L1Bk) weight JL = Ith(1 +

1/(15HzγτNMDA))

competition to U1 Ak (Bk) U1Ak (U1Bk) weight JU = Ith(1 +
1/(20HzγτNMDA))

first to second L1Ak (or any population in
layer 1)

L2Ak (corresponding popula-
tion in layer 2)

weight JI = 0.07nC

second to third L2Ak (or any population in
layer 2)

L3Ak (corresponding popula-
tion in layer 3)

weight JI = 0.07nC
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D Neuron and Synapse Model
Name Interneuron and pyramidal meanfield approximation
Type Firing rate, instantaneous GABA channel

Dynamic equa-
tions ρk

i (t) = Φ
(

Ik
inet(t)+ Ik

iext(t)
)

Φ(x) =
6151/nC x+177Hz

1− exp [−0.087s(6151/nC x+177Hz)]
if interneuron

Φ(x) =
3101/nC x+125Hz

1− exp [−0.16s(3101/nC x+125Hz)]
if pyramidal neuron

Ik
inet(t) =


JL/U sk

A(t) if i is L1Ak or U1Ak

JL/U sk
B(t) if i is L1Bk or U1Bk

JIρk
i−1(t) if i is layer 2 or 3 population

E Input

Dynamic equa-
tions Ik

iext(t) = IBackground + Ik
inoise(t)

IBackground =


0nA if population in layer 1

0.416nA if population in layer 2
0.9nA if population in layer 3

Ik
inoise(t +dt) = (1−dt/τnoise)Ik

inoise(t)+η(t)
√

0.5∗ (1− exp(2dt/τnoise))σi

σi = 0.002nA if i is an interneuron
σi = 0.01nA if i is an pyramidal neuron

Table 3. Counting layer

A Model Summary
Populations 6 populations DA, DB, HA, HB, CA and CB
Topology —
Connectivity —
Neuron model Meanfield rate model governed by a fixed synaptic input - firing rate output relation.
Channel models Instantaneous AMPA and GABAA channel dynamics (i.e. fraction of channels open proportional to

firing rate).
Synapse model Continuous current dependent on the firing rate.
Plasticity —
Input Output from LA3k, LB3k, UA3k and UB3k. Background synaptic bombardment given by a constant

current plus an Ornstein-Ulhenbeck process
Measurements Firing rate.
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B Populations
Name Elements Size
DA Pyramidal neuron meanfield approximation 1
DB Pyramidal neuron meanfield approximation 1
HA Pyramidal neuron meanfield approximation 1
HB Pyramidal neuron meanfield approximation 1
CA Pyramidal neuron meanfield approximation 1
CB Pyramidal neuron meanfield approximation 1

C Connectivity
Name Source Target Pattern
layer 3 to D L3A/Bk DA/B weight JD = 0.68/N
layer 3 to H U3A/Bk HA/B weight JD = 0.68/N
D and H to C DA/B and HA/B CA/B weight JC = 0.0032

D Neuron and Synapse Model
Name Meanfield competition approximation
Type Firing rate, instantaneous AMPA and GABAA

Dynamic equa-
tions ρi(t) = Φ(Iinet(t)+ Ii ext(t))

Φ(x) =
3101/nC x+125Hz

1− exp [−0.16s(3101/nC x+125Hz)]

Iinet(t) =


∑
k

JDsk
LA3/LB3(t) if i is DA/B

∑
k

JDsk
UA3/UB3(t) if i is HA/B

JC(ρDA/B(t)−ρHA/B(t)) if i is CA/B

E Input

Dynamic equa-
tions Ii ext(t) = IBackground + Ik

inoise(t)

IBackground = 0.416nA

Ik
inoise(t +dt) = (1−dt/τnoise)Ik

inoise(t)+η(t)
√

0.5∗ (1− exp(2dt/τnoise))0.01nA

The threshold crossing detection and counting layer follow similar dynamics. The populations in each layer are meanfield
approximations of a groups of integrate and fire neurons. However, the neurons inside each population are either pyramidal or
interneurons, and not mixtures as in the competition layer. Thus, the input-output relation and the synapses’ dynamics change.
The detailed description can be found in tables 2 and 3. The main synaptic differences are that:

1. The interneurons only target GABA receptors. The GABA channel dynamics is approximated as instantaneous, thus
the postsynaptic current is proportional to the interneuron’s firing rate.

2. The counting layer’s excitatory connections only are mediated by AMPA. This implies that, as with the interneurons,
the postsynaptic current is proportional to the presynaptic firing rate.

The proposed threshold crossing detection layer is based on the mechanism proposed by Lo and Wang7 to detect when a
neural population surpasses a given firing rate value. It relies on the widely used mechanism of disinhibition9–13. Each
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decision module in Fig. 1 .A is connected to a module that detects when one of the two decision pools crosses the threshold
for the decision, as shown in Fig. S3. The threshold module is composed of three layers and each layer has two branches,
L and U. Branch L is needed to signal the crossing of the lower decision threshold λ , while branch U is needed to detect
whether the module is in a given interval near the threshold or already crossed the upper threshold λ +∆λ . The decision
threshold mechanism works as following. The second and third layer receive background input that would drive them to
spike at a constant firing rate. However, the second layer constantly inhibits the third layer so it is silent. When one of the
two decision pools (e.g. A) increases the activity, due to the decision process, and crosses the decision threshold (15Hz), the
corresponding pool from layer one (LA1) of the threshold module is activated. This pool, in turn, inhibits its corresponding
layer 2 population (LA2), thus releasing inhibition from the corresponding third layer (LA3). Hence LA3 becomes active due
to the background input if A crosses the decision threshold. This implies that the third layer works as a binary indicator. It is
firing (“on”) if the competition population surpassed a certain threshold and is silent (“off”) otherwise. The upper threshold
mechanism (branch U) works in the same way but its threshold is set to a slightly higher value (20Hz).
The global pools DA, DB, HA and HB receive input from all modules, thereby counting how many modules crossed the lower
(DA and DB) and the upper threshold (HA and HB). The final commitment to a choice is based on the activity of pools DA
and DB. When DA or DB surpass a certain level of activity that corresponds to over half the modules having committed to the
same decision (97.68Hz for the parameters we used), the decision is taken. In order to form a confidence judgment the number
of modules near the threshold (FMC) is estimated by the confidence pools (CA and CB) that calculate the difference between
the activity of LA and HA for decision A (or LB and HB for decision B). The firing rate CA, if option A is selected, is used
as input to a sigmoid that determines the probability of high confidence as, PHigh(x) = 1/1+exp[a(x−c)]. The parameters of
the sigmoid control the bias and the slope of the transition from high to low confidence, and were determined by fitting the
subjects’ accuracy discriminated by confidence.

B.1 Description of model dynamics
An example of the network’s dynamics during a single trial is shown in fig. S4. During the shown trial, the target’s mean
luminance was set to 52cd/m2 and the distractor was set to 50cd/m2. The A populations were sensitive to the target patch
while the B populations were sensitive to the distractor. During the presented simulation, IC = 0.
The competing layer integrates sensory evidence for each option. A single module’s pair of competing Ak and Bk populations
is shown (Fig. S4.A). These competing populations drive the firing rates of the first layers of the threshold detection portion of
the network (Fig. S4.B). These, in turn, release the inhibition placed on the third layer LA3, LB3, UA3 and UB3 (Fig. S4C).
This layer works as a binary indicator value. The counting layer simply counts the number of third layer populations active
(Fig. S4.D).
Populations LA1, LB1, UA1 and UB1 receive synaptic input from competing neurons in each module, and become “active”
(fire sufficient spikes in order to inhibit populations LA2, LB2, UA2 or UB2) after receiving more than Ith current. The value
of Ith is determined in order to have a correct count method.
When population A has a constant firing rate, ρA, its NMDA gating variable is at a steady state, sA = (1+1/(ρAγτNMDA))

−1.
The synaptic current sent to populations LA1 and UA1 will be equal to

IL/U = wL/U

(
1+

1
ρAγτNMDA

)−1

(3)

where wL/U is the connection weight to populations LA1 or UA1. Assuming a value of Ith, the connection weights can be
calculated in order to detect the crossing at a given firing rate value ρA. wL = Ith(1+ 1/(15HzγτNMDA)) and wL = Ith(1+
1/(20HzγτNMDA)). The best value for Ith is the one that yields the best linear dependence between the number of competing
populations that have crossed the threshold and the firing rates of DA, DB, HA and HB. However, synaptic noise in the
threshold crossing detection and counter layers induce variability that makes measuring the best Ith value complicated. In
order to measure Ith, we perform simulations fixing the noise to zero in the threshold crossing detection and counter layers
(Fig. S5). The observed best linear dependence occurs at Ith = 0.29nA.
The resulting network yields the same behavior as the model with artificial counting.
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Figure S4. A single trial is simulated. Panels A, B and C show the firing rates of the populations in the same, single module out of 100 that were used in
the decision model. A. The single module’s populations A and B firing rate. In this particular module, population A wins the competition. B. The two layers
of interneurons in the threshold crossing detection layers. C. Indicator populations LA3, LB3, UA3 and UB3. D. Populations D, H and C for both
alternatives. Note that these are not for a single module but for the entire network. Dashed vertical black line indicates the time at which DA passed the
decision threshold and option A was selected.
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C Detailed correlations within discriminability
In Figures 2 and 3 of the main text we show correlations between our model’s RT, and σdv and FMC. These correlations were
shown for averaged RT, σdv and FMC values. The averages were done for separate discriminabilities (di) between the target
and distractor patches. Each average was taken on 2000 simulated trials. However, the shown correlation between RT and σdv,
and σdv and FMC still hold within the same discriminability (Fig. S6 and S7 respectively). It is clear that even for the same
discriminibability, our model’s dispersion is strongly correlated with the RT, and FMC is a valid estimate for said dispersion.

Figure S6. σdv as a function of RT for different stimuli discriminibabilities (di in cd/m2), and IC values. The IC is encoded in the color as shown in the
lateral colorbar. Black corresponds to IC = 0.5.
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Figure S7. FMC as a function of σdv for different stimuli discriminibabilities (di in cd/m2), and IC values. The IC is encoded in the color as shown in
the lateral colorbar. Black corresponds to IC = 0.5.
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D Response time distribution overlap
Its important to clarify that our model does not explicitly rely on response time to compute confidence. Confidence is readout
from an estimate of dispersion, which is only correlated with RT. In fact, if subjects only relied on RT to determine confidence,
the distributions would not have a large overlap. However, we observe, both for simulations and for subjects’ data, that RT
distributions split by confidence are very overlapped, and that low confidence reports are usually associated to longer RTs (Fig.
S8). The simulation’s RT distribution is nothing like the subjects’ distribution which in fact is expected, as we force the model
to decide in less than 1s. This was done because, in this work, we are not interested in reproducing the detailed RT distribution.
For our analyses it was sufficient to only look at the task accuracy and sensory fluctuation’s influence. To be able to account
for the RT distribution, which is by its self a very difficult task, the merit function described in section “Data Fitting” of the
main text should be adapted to include the RT’s goodness of fit and probably the background input or network connection
weights should be changed. We deemed this was too computationally expensive and beyond our intended analysis.
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Figure S9. A σdv as a function of the stimulus duration. B Selected option FMC as a function of the stimulus duration. C Performance as a function of
stimulus duration.

E Fixed delay task
The model was only tested on reaction time trials where it had to decide when it was ready and could sample the stimuli for
as long as it needed. This was due to the fact that the behavioral data used to fit the psychophysical kernels was taken with
reaction time trials. However, many experiments use the fixed delay paradigm where the stimulus is presented for a fixed time
and the subject must respond14,15. Zylbergerg et al16 also studied a task of this nature (random dot motion) and found that the
decision and confidence kernels were qualitatively similar to those measured with the reaction time luminance discrimination
task. However, they only tested one stimulus duration that was relatively long. When the stimuli are presented for very brief
periods of time, subjective reports tend to be of low confidence. As the stimulus duration raises, so does the high confidence
report rate17–20. Our model is also able to capture this fact (Fig. S9).
However, care must be taken when forcing our proposed network to decide upon a limited amount of evidence (short stimuli
durations). If the sensory input disappears to soon, the network may have not yet committed to a choice. This implies that
some of the modules may even revert to a low firing rate steady state and never select amongst the alternatives. We propose
that once stimulation vanishes, if the network has not committed to a choice, it queries the modules (i.e. forces them to cast a
vote). We propose this is accomplished by increasing the background task non-specific synaptic input (IBackground) to a level
that forces the ANNs to choose one of the two alternatives.
We test our model’s ability to explain confidence’s dependence with stimulus duration by presenting it with two fluctuating
sensory inputs. Both inputs are resampled from a normal distribution each 40ms. The target mean luminance is 52cd/m2, the
distractor mean is 50cd/m2 and the standard deviation is 5cd/m2. The stimuli are presented at t = 1s and last different times.
After the stimuli are turned off, the network is forced to select an option by increasing the background mean synaptic input
to force a winner take all situation (IBackground = 0.3455nA). Upon the decision time, σdv and FMC are measured (Fig. S9.A
and B). The FMC increases (σdv decreases) with stimulus duration and thus the probability of high confidence reports also
increases. Accuracy also increases with stimulus duration until it reaches a stable value (Fig. S9.C).
This test is sufficient to say that when the environment controls stimulus duration, it modulates our model’s confidence.
However, if the model were aware of the length of the stimulation beforehand it could shift its criterium to favor speed or
accuracy. This implies that the model could adopt a level of IBackground that yielded slow or fast responses, thus tuning its
speed/accuracy tradeoff21,22. We simulate 2000 trials with the same stimulation protocol as above but without turning off
the sensory inputs, and for different IBackground values. We observe, as is expected, that high IBackground yields faster and less
accurate responses, while low IBackground produces slower, more accurate decision (Fig. S10.A and B). However, σdv and
FMC have a non-monotonic dependence with IBackground (Fig. S10.C and D). Experimental observations show that subjects
respond with greater confidence when favoring accurate responses17,19. To reproduce this, σdv should monotonically increase
with IBackground , which is clearly not the case. It is worthy to note that for IBackground values above 0.3255nA (the value
used for all simulations), σdv (FMC) is monotonically increasing (decreasing), which could be a sign that our model can
account for the speed accuracy trade-off only in a limited range of background inputs. Nevertheless, the non-monotonicity
for σdv as a function of IBackground appears to be in grave contradiction with experimental observations; however, our model
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Figure S10. Simulations for different IBackground values. A, B, C and D show the average RT, accuracy, σdv and FMC, respectively, over 2000
independent trials. The star marker shows the data point that corresponds to IBackground = 0.3255nA, which is the background input used all other
simulations.

is constructed assuming that the balance of speed and accuracy, i.e. the decision policy, is constant. Thus we do not study
the problem of confidence calibration23. Calibration is the process through which a summary statistic (in our case the σdv or
FMC) is transformed to certainty level or a confidence report (which we assume occurs in a separate layer). This problem
requires feedback connections and parameter tuning to actively learn the proper calibration for a variable decision policy. This
also implies that the parameters that determine the probability of high confidence should also change with IBackground . This
interesting problem is well beyond what we studied in the present work.
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