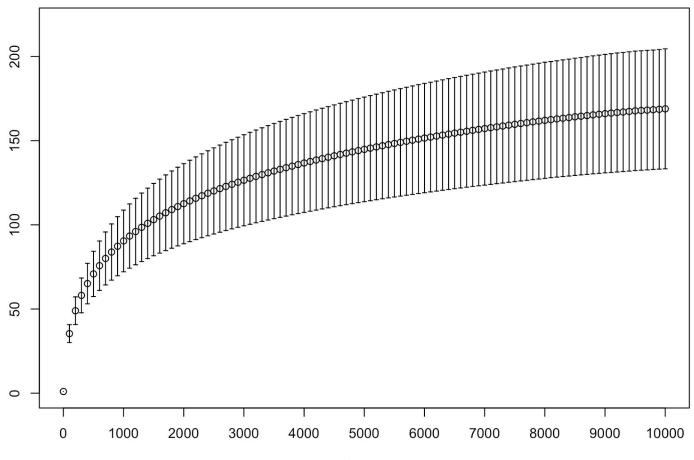
Bacterial diversity in saliva and oral health-related conditions: the Hisayama Study

Toru Takeshita¹, Shinya Kageyama¹, Michiko Furuta¹, Hidenori Tsuboi¹, Kenji
Takeuchi¹, Yukie Shibata¹, Yoshihiro Shimazaki², Sumio Akifusa³, Toshiharu Ninomiya⁴, Yutaka Kiyohara⁵, Yoshihisa Yamashita^{1*}

¹Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan, ²Department of Preventive Dentistry and Dental Public Health, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan, ³Department of Oral Health Management, School of Oral Health Science, Kyushu Dental College, Kitakyushu, Japan, ⁴Division of Research Management, Center for Cohort Studies, Graduate School of Medial Sciences, Kyushu University, Fukuoka, Japan, ⁵Department of Environmental Medicine,

15 Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan


Correspondence and requests for materials should be addressed to Y.Y.

Supplemental Figure Legend

Supplemental Figure 1. Rarefaction curves for a number of observed operational taxonomic units (OTUs) per sample. Mean number of observed OTUs almost reached a plateau by 5,000 sequence reads. The error bars indicate the standard deviation.

 $\mathbf{5}$

Number of observed OTUs per sample

Number of sequence reads

Supplemental Table

	Community type			core operation	Bacterial phylum	Bacterial species
		Type I	Type II	P value ^a	corresponding to each OTU	corresponding to each OTU
5	OTU1	2.9 ± 1.7	1.5 ± 0.9	< 0.001	Firmicutes	Veillonella parvula (161)
	OTU2	0.7 ± 1.1	4.3 ± 3.6	< 0.001	Bacteroidetes	Porphyromonas sp. (279)
	OTU3	2.2 ± 2.4	0.4 ± 0.6	< 0.001	Bacteroidetes	Prevotella histicola (298)
	OTU4	1.0 ± 1.2	0.9 ± 1.1	0.009	Bacteroidetes	Alloprevotella sp. (308)
	OTU5	10.5 ± 6.7	7.1 ± 4.7	< 0.001	Bacteroidetes	Prevotella melaninogenica (469)
10	OTU6	3.2 ± 1.8	1.6 ± 1.0	< 0.001	Firmicutes	Veillonella atypica (524)
	OTU7	3.0 ± 2.0	3.1 ± 1.9	0.055	Firmicutes	Granlicatella adiacens (534)
	OTU8	1.9 ± 2.9	1.0 ± 1.4	< 0.001	Actinobacteria	Rothia dentocariosa (587)
	OTU9	2.7 ± 3.1	15.7 ± 8.7	< 0.001	Proteobacteria	Neisseria flavescens (610)
	OTU10	4.1 ± 3.2	4.7 ± 3.1	< 0.001	Firmicutes	Streptococcus mitis (677)
15	OTU11	10.4 ± 8.3	7.5 ± 5.5	< 0.001	Actinobacteria	Rothia mucilaginosa (681)
	OTU12	0.9 ± 1.4	$\boldsymbol{1.8 \pm 1.8}$	< 0.001	Proteobacteria	Haemophilus parainfluenzae (718)
	OTU13	$\textbf{2.7} \pm \textbf{2.2}$	0.9 ± 0.9	< 0.001	Firmicutes	Streptococcus parasanguinis (721)
	OTU14	5.1 ± 4.3	1.6 ± 1.9	< 0.001	Firmicutes	Streptococcus salivarius (755)
	OTU15	1.4 ± 1.3	2.1 ± 1.5	< 0.001	Firmicutes	Gemella sanguinis (757)
20	OTU16	1.8 ± 2.6	1.0 ± 1.6	< 0.001	Actinobacteria	Actinomyces graevenitzii (866)
	OTU17	0.8 ± 1.0	1.3 ± 1.1	< 0.001	Firmicutes	Genus Streptococcus
	OTU18	1.0 ± 1.3	2.1 ± 1.6	< 0.001	Firmicutes	Genus Streptococcus
	OTU19	$\textbf{3.7} \pm \textbf{3.3}$	3.0 ± 2.8	< 0.001	Actinobacteria	Genus Actinomyces
	OTU20	$\textbf{2.0} \pm \textbf{2.4}$	0.3 ± 0.5	< 0.001	Bacteroidetes	Genus Prevotella
25	OTU21	3.5 ± 3.1	$\textbf{3.8} \pm \textbf{3.0}$	0.020	Firmicutes	Genus Streptococcus
	OTU22	$\textbf{2.6} \pm \textbf{2.4}$	0.9 ± 1.0	< 0.001	Firmicutes	Genus Streptococcus

Table S1. Relative abundances of 22 dominant core operational taxonomic units (OTUs) in each community type.

^aSignificant differences between two community types were evaluated by using Student's t-test. The values that were significantly higher than the other community are shown in boldface.