Neuroprotective Effects of a standardized flavonoid extract of safflower against Neurotoxin-Induced Cellular and Animal Models of Parkinson's Disease

Rutong Ren^{a, b}, Chunyan Shi^{c, d}, Jing Cao^b, Yi Sun^{a, b}, Xin Zhao^{a, b}, Chen Wang^{a, b}, Yongfei Guo^{a, b}, Hui Lei^{a, b}, Hanjie Jiang^{a, b}, Nuramatjan Ablat^{a, b}, Jiamin Xu^{a, b}, Wan Li^{a, b}, Yingcong Ma^b, Xianrong Qi^b, Min Ye^b, Xiaoping Pu^{a, b,*}, Hongbin Han^{c, d, *}

a Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China

b State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China

c Beijing Key Lab of MRI Device and Technique, Beijing 100191, China

d Department of Radiology, Peking University Third Hospital, Beijing 100191, China

*Corresponding author:

Xiaoping Pu, E-mail: pxp123@bjmu.edu.cn

Hongbin Han, E-mail: hanhongbin@bjmu.edu.cn

Symbol	Name	Unit	Definition
α	Volume fraction Dimensionle		Ratio of the ECS occupies of the total brain volume
D*	Effective diffusion coeffcient	mm ² /s	$D^* = D \setminus \lambda^2$, Diffusion rate of a substance in a diffusion-limited medium, such as the brain
λ	Tortuosity	Dimensionless	Pathway of a substance diffusing from one point to another in the brain ECS, the length is equal to or longer than the straight line distance between these two points
k'	Clearance	Mmol/L	Loss or clearance of a substance from the ECS, into cells, across the blood brain barrier (BBB), or by degradation through enzymatic attack or other processes

Table S1 | The important parameters for evaluating ECS

D is a free diffusion coefficient (mm^2/s) and defined as diffusion rate of a substance in a free medium, such as the diluted agarose hydrogel.

Figure S1 | The chromatogram and mass spectrum of SAFE.

No.	RT(min)	[M-H]-(m/z)	MSn(m/z)	Identification
1	9.72	611	MS ² [611]:491 ,473,325 MS ³ [491]:473,283	hydroxysafflor yellow A (HSYA)
2	14.93	771	MS ² [771]:609,463,301MS ³ [609]:301	6-hydroxykaempferol 3-O-rutinoside-7-O-glucoside (6H3R7G) or 6-hydroxykaempferol 3-O-β-D-rutinoside-6-O-β-D-glucoside (6H3R6G)
3	15.71	625	MS ² [625]:463, MS ³ [463]:301	6-hydroxykaempferol 3,7-di-O-glucoside (6H3G) or 6-hydroxykaempferol 6,7-di-O-β-D-glucoside (6H6G)
4	20.4	609	MS ² [609]:301	6-hydroxykaempferol 3-O-β-D- rutinoside (6H3R) or quercetin 3-O-rutinoside (rutin)
5	21.55	463 1087	MS ² [463]:301; MS ³ [301]:255,271 MS ² [1087]:625,461 MS ³ [625]:463,301 MS ⁴ [463]:301	6-hydroxykaempferol 3-O-β-D-glucoside (6HK3G)
6	22.08	609	MS ² [609]:429,284,339,447 MS ³ [284]:338	kaempferol 3-O-β-D-sophoroside (K3S)
7	22.69	1043	MS ² [1043]:1025,923,1007,449 MS ³ [1025]:1007,863,671 MS ² [923]:449,527,759	isomer of anhydrosafflor yellow B (AYB)
8	21.34	609	MS ² [609]:301,489,549,591 MS ³ [301]:273,255,179	quercetin 3-O-rutinoside (rutin)
9	26.52	1043	MS ² [1043]:1025,923,1007,449 MS ³ [1025]:1007,863,671 MS ² [923]:449,527,759	isomer of anhydrosafflor yellow B (AYB)
10	27.59	463	MS ² [463]:301,180,393 MS ³ [301]: 179,254,271	qucertin-3-O-glucoside (Q3G)

Table S2 | The identified compounds in the SAFE with LC/MS analysis

11	29.69	449	MS ² [449]:287,255,167 MS ³ [287]:181,259,241	4',5-dihydroxyl-7-O-glucopyranosyl flavanone (4D7GF)
12	34.97	593	MS ² [593]:285 MS ³ [285]:257,229,213,197	kaempferol 3-O-rutinoside (K3R)
13	37.24	623	MS ² [623]:315, 300 MS ³ [315]:300	6-hydroxyapigenin 6-O-β-D-glucoside-7-O-β-D-glucuronide (6H6G7G)
14	38.76	1043	MS ² [1043]:1025,923,449 MS ³ [1025]:1007,863 MS ⁴ [863]:845,671,771,287	anhydrosafflor yellow B (AYB)
15	40	447	MS ² [447]:315, 300 MS ³ [315]:300	kaempferol 3-O-glucoside (K3G)
16	43.78	449	MS ² [449]:287, 253 MS ³ [287]:181,167	4',5-dihydroxyl-6-O-glucopyranosyl flavanone (4D6GF) or its isomer
17	44.43	449	MS ² [449]:287, 253 MS ³ [287]:181,167	4',5-dihydroxyl-6-O-glucopyranosyl flavanone (4D6GF) or its isomer
18	44.91	836	MS ² [836]:790 MS ³ [790]:772,564,451	isorhamnetin
19	51.47	491	MS ² [491]:287 ,181,431 MS ³ [287]:181,259	4',5-dihydroxyl-7-O-[6''-acetyl(1→6)]-glucopyranosyl flavanone (4D76GF)

Also, in the SAFE there are still some unknown compounds that still need identification

Figure S2 | Effects of SAFE on cell viability of rotenone-induced differentiated PC12 cell damage. Cells were pretreated with SAFE (125, 250 and 500 μ g/ml) for 6 h before rotenone treatment for 24 h. Data are the mean \pm SEM, n = 3, ##P < 0.01 vs. untreated control (CTR) group; *P <0.05, **P<0.01 vs. rotenone group.

Figure S3 | Multiple foci of neuronophagia (solid arrows) as denoted by necrotic neurons surrounded or obscured by inflammatory cells. Bar = $200 \mu m$. The sections of SN were prepared and picked up as described as immunohistochemistry and then the sections was stained with 0.5% cresyl violet acetate in the SN.

Apparatus and chromatographic conditions for HPLC and LC/MS. An Agilent 1100 HPLC system equipped with a quaternary solvent delivery system, an autosampler and a DAD detector was used. Separation was achieved on an Alltima-C18 column (5 μ m, 250 mm × 4.6 mm, Agilent). The mobile phase consisted of A (0.3% aqueous methanoic acid) and B (Acetonitrile: methanol = 9:1), which were applied in the gradient elution as follows: 0-5 min: 10-14% B; 5-25 min: 14-17% B; 25-35 min: 17-18% B; 35-45 min: 18-25% B; 45-55 min: 25-30% B; 55-60 min: 30 % B. Each run was followed by equilibration time of 5 min. The flow rate was 1.0 ml/min. The column temperature was set at 30°C. Ultraviolet (UV) spectra were monitored at 345 nm. The injection volume was 10 μ l. The data were collected and analyzed with Chemstation 10.02 software.

For MS analysis, the HPLC conditions were the same as described and the mass spectrometer was operated in (–)-ESI mode. Ultra-high purity helium and high-purity nitrogen was used as the collision gas and the nebulizing gas, respectively. The optimized parameters were as follows: ion spray voltage, 3.5 KV; sheath gas, 50 arbitrary units; auxiliary gas, 10 arbitrary units; capillary temperature, 350 °C; capillary voltage, –49.0 KV; tube lens offset voltage, –36.0 V. Mass spectra were recorded in the range of m/z 130-1000. The collision-induced dissociation energy was adjusted to 40%, and the isolation width of precursor ions was 2.0 mass units. Data were processed by Xcalibur 1.4 software (ThermoFisher).