

Cumulative distribution of PSI-Blast family sizes

PSI-Blast search at an E value of \leq 10^{-3}. At this E-Value cut-off we count for each query how many subjects we receive in Uniprot, which is defined as "family size". Shown is on the y-axis the cumulative percentage of the proteins (novel, blue; annotated, red) which have a family size of the same size or smaller than this given percentage of the proteins. E.g., at a family size of 200, about 57% of the novel proteins have a family size of 200 or less, but only about 5% of the annotated proteins have a family size of 200 or less. More important than the actual values is the trend, since the E-value or any chosen percentage / family size combination are of arbitrary choice. However, most of the novel proteins have small family sizes compared to the annotated.

Cumulative distribution of HHblits family sizes

HHblits search at an E value of ≤10⁻³. At this E-Value cut-off we count for each query how many subjects we receive in Uniprot, which is defined as "family size". Shown is on the y-axis the cumulative percentage of the proteins (novel, blue; annotated, red) which have a family size of the same size or smaller than this given percentage of the proteins. E.g., at a family size of 200, about 59% of the novel proteins have a family size of 200 or less, but only about 18% of the annotated proteins have a family size of 200 or less. More important than the actual values is the trend, since the E-value or any chosen percentage / family size combination are of arbitrary choice. However, most of the novel proteins have small family sizes compared to the annotated.