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1 Supplementary Table

Table S1: Comparison between TINCD and base clustering solutions.

CYC2008 MIPS SGD
Methods # complexes # proteins Acc FRAC Acc FRAC Acc FRAC
TINCD 1562 5846 0.776 0.813 0.611 0.685 0.740 0.742

EC-BNMF 457 2105 0.751 0.677 0.617 0.671 0.716 0.623
CMBI 618 1041 0.459 0.349 0.442 0.404 0.450 0.347
InteHC 684 3400 0.748 0.634 0.645 0.670 0.712 0.597
CFinder 245 2008 0.518 0.319 0.514 0.330 0.521 0.288

CMC 562 1651 0.643 0.655 0.528 0.660 0.622 0.614
COACH 746 1838 0.650 0.664 0.559 0.665 0.631 0.631

ClusterONE 342 1366 0.584 0.438 0.493 0.448 0.583 0.445
DPClus 651 2140 0.639 0.680 0.529 0.660 0.624 0.619
IPCA 816 1621 0.617 0.575 0.525 0.601 0.610 0.547
MCL 600 4101 0.644 0.536 0.523 0.468 0.617 0.470

MCODE 108 666 0.485 0.311 0.425 0.315 0.495 0.297
RNSC 541 2095 0.619 0.506 0.501 0.458 0.619 0.508
RRW 248 1174 0.571 0.511 0.478 0.512 0.557 0.436
SPICi 412 2113 0.607 0.502 0.515 0.483 0.596 0.483

BT 409 1286 0.728 0.591 0.600 0.552 0.700 0.593
C2S 1035 4500 0.761 0.664 0.599 0.586 0.716 0.610

CACHET 449 964 0.674 0.553 0.563 0.542 0.656 0.517
Hart 390 1307 0.720 0.600 0.587 0.576 0.692 0.572
Pu 400 1504 0.732 0.579 0.604 0.567 0.695 0.581

Table S2: The Mapped Complexes for DNA-directed RNA polymerase II, DASH, RSC and Prefoldin Complexes Predicted
by Various Methods

Methods
DNA-directed RNA polymerase DASH complex RSC complex Prefoldin complex

II complex (12 proteins) (10 proteins) (17 proteins) (6 proteins)
Predicted size Overlap Predicted size Overlap Predicted size Overlap Predicted size Overlap

EC-BNMF 10 8 8 8 13 13 6 5
InteHC 9 7 7 7 10 10 5 5
TINCD 12 10 11 10 14 14 7 6

2 Supplementary Figure
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Table S3: Comparison between TINCD and base clustering solutions in terms of Specificity, Sensitivity and f -measure.

CYC2008 MIPS SGD
Methods Specificity Sensitivity f -measure Specificity Sensitivity f -measure Specificity Sensitivity f -measure
TINCD 0.211 0.855 0.338 0.144 0.759 0.242 0.176 0.788 0.288

EC-BNMF 0.335 0.668 0.446 0.228 0.627 0.334 0.284 0.594 0.385
CMBI 0.395 0.615 0.481 0.298 0.603 0.399 0.340 0.577 0.428
InteHC 0.339 0.590 0.431 0.246 0.573 0.344 0.303 0.539 0.388
CFinder 0.294 0.310 0.302 0.184 0.249 0.211 0.261 0.276 0.268

CMC 0.267 0.649 0.378 0.187 0.603 0.285 0.235 0.592 0.336
COACH 0.345 0.765 0.475 0.248 0.737 0.371 0.296 0.718 0.419

ClusterONE 0.336 0.438 0.381 0.205 0.448 0.281 0.304 0.445 0.361
DPClus 0.273 0.704 0.394 0.187 0.639 0.290 0.223 0.617 0.327
IPCA 0.319 0.722 0.442 0.221 0.690 0.334 0.278 0.680 0.395
MCL 0.198 0.522 0.287 0.125 0.410 0.192 0.163 0.439 0.238

MCODE 0.574 0.277 0.373 0.417 0.245 0.308 0.500 0.245 0.329
RNSC 0.198 0.480 0.280 0.122 0.375 0.184 0.176 0.450 0.253
RRW 0.411 0.470 0.439 0.274 0.407 0.328 0.339 0.387 0.361
SPICi 0.248 0.466 0.323 0.163 0.390 0.229 0.216 0.422 0.286

BT 0.579 0.541 0.559 0.364 0.438 0.398 0.554 0.529 0.541
C2S 0.176 0.622 0.275 0.102 0.472 0.167 0.156 0.556 0.243

CACHET 0.745 0.719 0.732 0.526 0.671 0.590 0.615 0.661 0.637
Hart 0.578 0.550 0.564 0.362 0.456 0.403 0.513 0.502 0.507
Pu 0.519 0.519 0.519 0.364 0.460 0.407 0.505 0.512 0.509

Table S4: The performance of TINCD when one of the base clustering results is not used to construct the consensus matrix.

CYC2008 MIPS SGD
Methods Acc FRAC Acc FRAC Acc FRAC
CFinder 0.769 0.770 0.612 0.700 0.733 0.703

CMC 0.769 0.749 0.609 0.675 0.731 0.682
COACH 0.771 0.796 0.605 0.685 0.733 0.728

ClusterONE 0.768 0.753 0.608 0.655 0.733 0.699
DPClus 0.774 0.762 0.610 0.675 0.735 0.695
IPCA 0.776 0.766 0.608 0.675 0.739 0.716
MCL 0.767 0.745 0.603 0.645 0.725 0.669

MCODE 0.766 0.783 0.604 0.660 0.730 0.725
RNSC 0.773 0.762 0.608 0.655 0.735 0.708
RRW 0.775 0.774 0.609 0.655 0.731 0.699
SPICi 0.773 0.787 0.614 0.685 0.736 0.725

BT 0.774 0.766 0.610 0.645 0.736 0.708
C2S 0.789 0.830 0.626 0.695 0.736 0.742

CACHET 0.772 0.779 0.607 0.645 0.735 0.700
Hart 0.771 0.770 0.609 0.645 0.736 0.716
Pu 0.770 0.787 0.607 0.660 0.729 0.691

C2S + T C2S + P C2S + T + P
0.5

0.55

0.6

0.65

A
cc

u
ra

cy
 o

n
 M

IP
S

 

 

Matrix Averaging
SNF

(a)

C2S + T C2S + P C2S + T + P
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

F
R

A
C

 o
n

 M
IP

S

 

 

Matrix Averaging
SNF

(b)

Figure S1: SNF vs. Matrix Averaging in terms of (a) Accuracy and (b) FRAC with respect to MIPS.

3 Supplementary Text

3.1 Graph regularized Doubly Stochastic Matrix Decomposition model
The objective function of Graph regularized Doubly Stochastic Matrix Decomposition model is as follows:
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Table S5: The performance of TINCD when the consensus matrix of PPI data is constructed by randomly selecting 5 from
the 11 base clustering solutions.

CYC2008 MIPS SGD
Case Acc FRAC Acc FRAC Acc FRAC

1 0.774 0.757 0.611 0.675 0.735 0.720
2 0.772 0.787 0.607 0.665 0.730 0.729
3 0.784 0.834 0.617 0.700 0.737 0.742
4 0.770 0.770 0.617 0.670 0.735 0.703
5 0.763 0.774 0.602 0.645 0.729 0.720
6 0.761 0.745 0.607 0.620 0.727 0.690
7 0.768 0.774 0.604 0.635 0.726 0.711
8 0.770 0.757 0.602 0.645 0.721 0.665
9 0.772 0.745 0.607 0.694 0.731 0.703

10 0.775 0.782 0.613 0.674 0.731 0.708
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Figure S2: SNF vs. Matrix Averaging in terms of (a) Accuracy and (b) FRAC with respect to SGD.
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Figure S3: Accuracy and FRAC of TINCD, NMF, Hierarchical clustering with 3 different quality functions (i.e., HC-Q1,
HC-Q2 and HC-Q3), ClusterONE and SPICi.

 min
θ≥0
J (θ) =

∑
ij

(
−Wij log Ŵij + Ŵij

)
+ λ

(
Tr(θTDθ)− Tr(θTWθ)

)
.

s.t.
∑K

k=1 θik = 1, i = 1, . . . , N.
(1)

where λ ≥ 0 is the tradeoff parameters that control the balance between the two factors.

To implement the optimization, we employ a relaxed Majorization-Minimization algorithm [17]. Let Φ = [ϕiz] be the
Lagrange multipliers for constraint θ ≥ 0 and ηi be the Lagrange multipliers for constraint

∑K
k=1 θik = 1. Therefore, the
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Figure S4: The COMPASS complex as detected by different computational methods. The shadow area shows the complex
predicted by each method, red circle nodes represent subunits of the COMPASS complex in CYC2008.

Lagrange function L is as follows:

L (θ,Φ, η) =
∑
ij

(
−Wij log Ŵij + Ŵij

)
+ λ

(
Tr(θTDθ)− Tr(θTWθ)

)
(2)

+
N∑
i=1

K∑
k=1

ϕikθik +
N∑
i=1

ηi(
K∑

k=1

θik − 1).

Let ∇ = ∇+ − ∇− denote the gradient of J with respect to θ, where ∇+ and ∇− are the positive and negative parts
respectively. This suggests a fixed-point update rule for θ:

θ′ = θ
∇−

ik − ηi

∇+
ik

. (3)

Imposing
∑K

k=1 θik = 1, we could obtain:

ηi =
bi − 1

ai
. (4)

where ai =
∑

v
θiv
∇+

iv

and bi =
∑

v θiv
∇−

iv

∇+
iv

.
The update rule for θ is shown in Algorithm 1. Once θ is initialized, we update θ according to Algorithm 1 until a

stopping criterion is satisfied. In this study, we stop the iteration until the relative change of objective function is less than
1e-6 or the number of iterations reach the maximum iteration times (here we limit the maximum iteration times to be 200).
Since the objective function in Equation (1) is non-convex, the final estimators of each θ depends on the initial values. To
reduce the risk of local minimization, we repeat the entire updating procedure 20 times with random initialization and choose
the result that gives the lowest value of the objective function (1) as the final estimator of θ, which is denoted as θ̂.

3.2 Competing methods
In the experiments, the consensus matrices are built via integrating various base clustering results from PPI data and TAP
data. In particular, 11 state-of-the-art approaches were applied to PPI data to generate complexes, including CFinder [1],
CMC [10], COACH [15], ClusterONE [12], DPClus [2], IPCA [9], MCL [4], MCODE [3], RNSC [8], RRW [11] and SPICi
[7]. We also collected the complexes predicted from TAP data by 5 existing methods, including BT [5], C2S [16], CACHET
[14], Hart [6] and Pu [13]. Protein complexes predicted by these 5 methods are obtained via the best tuned parameters and
downloaded from http://www.ntu.edu.sg/home/zhengjie/data/InteHC/.

Among these algorithms, the performance of CFinder is determined by the size of k-clique. CMC has two key parameters
called overlap threshold and merging threshold. COACH has one key parameters called ω. DPClus uses two parameters Din

and CPin (Din is a value of minimum density and CPin is a minimum value for cluster property) to determine whether a
neighbor should be added to the cluster. IPCA has two key parameters called Tin and d. MCL has one tuning parameter
called inflation. MCODE has one key parameter called node score cutoff. The performance of RRW is determined by the
minimum cluster size. SPICi has one key parameter called density threshold. EC-BNMF is an ensemble clustering algorithm
which has two key parameters. In this study, optimal parameters are set for CFinder, CMC, COACH, DPClus, IPCA, MCL,
MCODE, RRW, SPICi and EC-BNMF to generate their best results while ClusterONE and RNSC have used the default
parameters set by the authors. For CFinder, k is taking a value from 3 to 10, step size by 1, and it gets the best performance
when k = 3. For CMC, the value of the overlap threshold is from 0.2 to 0.8, with a step size of 0.1, while the value of the
merging threshold is from 0 to 1, with a step size of 0.1, and it achieves the best performance when both overlap threshold
and merging threshold are set to 0.5. For COACH, the values of ω is set to 0.225. For DPClus, we try different values of
Din and CPin (from 0.3 to 0.8 with 0.1 as the step size), and it gets the best performance when both Din is set to 0.6 and
CPin is set to 0.5. For IPCA, the value of d is set to 2, while the value of Tin is ranged from 0.1 to 0.9 with 0.1 as the step
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Algorithm 1 Pseudocode for detecting protein complexes using graph regularized doubly stochastic matrix decom-
position model.

• Input:
co-complex similarity matrix W , parameters K, λ.

• Output:
Q. // The set of predicted protein complexes.

1: begin:

2: t=1;

3: Initialize matrix θ randomly; // Initialization

4: while |J
(t−1)−J (t)

J (t) | > ε and t ≤MaxIterations do

5: sk =
∑N

z=1 θzk

6: Zij =
(∑K

k=1
θikθjk

sk

)−1

Wij

7: ∇+
ik = (θTZθ)kks

−2
k + 2

∑N
j=1 θjks

−1
k + 2λ(Dθ)ik

8: ∇−
ik = 2(Zθ)iks

−1
k +

∑N
i,j=1 θikθjks

−2
k + 2λ(Wθ)ik

9: ai =
∑

v
θiv
∇+

iv

, bi =
∑

v θiv
∇−

iv

∇+
iv

10: θik ← θik
∇−

ikai+1

∇+
ikai+bi

11: t = t + 1;

12: J (t) =
∑

ij

(
Wij log

Wij

Ŵij
−Wij + Ŵij

)
+ λ

(
Tr(θTDθ)− Tr(θTWθ)

)
;

13: end while

14: Obtain the final protein-complex assignment matrix θ⋆.

15: Output: Q, the set of predicted protein complexes.
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size, and it achieves the best performance when Tin = 0.5. For MCL, the value of inflation is chosen from 1.2 to 4.9 with
an interval of 0.1, and it gets the best performance when inflation is set to 1.9. For MCODE, the value of node score cutoff
is searched from 0.1 to 1 with an interval of 0.1, and it gets the best performance when the node score cutoff is set to 0.2.
For RRW, the minimum cluster size is set to 5. For SPICi, we try different values of density threshold, ranges from 0.1 to 1
with 0.1 increment, and it achieves the best performance when the density threshold is set to 0.5. As an ensemble clustering
algorithm, the input data for EC-BNMF are a series of base clustering results which could be derived from different clustering
algorithms. Therefore, in this study, we use the clustering results of the above 16 approaches as the input data for EC-BNMF.
The clustering results of EC-BNMF are obtained over the best tuned parameters (K = 2000, a = 2, b = 180). The source
codes for all these algorithms are obtained from the web pages provided in the corresponding papers.

3.3 Comparative results with respect to f -measure
When evaluating the predicted clusters set over a reference set, other commonly used evaluation metrics include Sensitivity,
Specificity and f -measure. Given xi and yj , we consider them to be matching if |xi∩yj |2

|xi||yj | ≥ ω and ω is set as 0.2 in our
study. Let TP (true positive) be the number of the predicted complexes matched by the known complexes, and FN (false
negative) be the number of the known complexes that are not matched by the predicted complexes, and FP (false positive)
be the number of predicted complexes minus TP . Sensitivity, Specificity and f -measure are then defined as follows:

Sensitivity =
TP

TP + FN
,Specificity =

TP

TP + FP
,

f −measure =
2× Sensitivity × Specificity

Sensitivity + Specificity
. (5)

We calculate the Sensitivity, Specificity and f -measure for each method in Table S3. As shown in Table S1, our TINCD
predicts 1,562 complexes covering 5,846 proteins, which is very close to the size of input data with 5,929 proteins. However,
with respect to all the three gold standard sets, our method gets low Specificity and high Sensitivity. We note that the data set
used in our study contains 5,929 proteins, while the three gold standard sets (i.e., CYC2008, MIPS and SGD) cover 1,324,
1,171 and 1,154 proteins. That is, the gold standard sets are far from complete. Thus, most of our predicted complexes are not
able to match the benchmark complexes. According to the definition of Specificity, these predicted complexes are treated as
false positive, so TINCD achieves a low Specificity. However, predicted protein complexes that do not match with reference
complexes are not necessarily undesired results and they would probably be novel protein complexes [16, 12]. Therefore,
optimizing Specificity and f -measure will somehow prevent us from detecting novel complexes. This is the main reason why
we do not use these metrics to evaluate the performance of various methods. On the other hand, as discussed in [16, 12],
Accuracy and FRAC are more suitable to evaluate the performance of an overlapping protein complex detection algorithm.
So we use these two metrics to evaluate the performance of various methods.

3.4 Protein complexes more accurately detected by TINCD
In this section, we will introduce several example protein complexes that are more accurately detected by TINCD. As men-
tioned in the manuscript, EC-BNMF and InteHC are two integrative methods that can always achieve superior performance
than other computational methods, so we only list the results of TINCD, EC-BNMF and InteHC. Figure S4 shows how the
COMPASS complex is found by the clustering algorithms we have studied. This complex in CYC2008 involves 8 proteins.
TINCD is the only algorithm that could correctly cover all the proteins in this complex. All other algorithms make various
mistakes as follows. EC-BNMF and InteHC are designed to integrate either different clustering results or diverse data sources
for protein complex detection. Both of them missed 1 proteins in the COMPASS complex. In Table S2, we list more example
protein complexes that are more accurately detected by TINCD.
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