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ABSTRACT Image quality can be defined objectively in
terms of the performance of some "observer" (either a human
or a mathematical model) for some task of practical interest. If
the end user of the image will be a human, model observers are
used to predict the task performance of the human, as mea-
sured by psychophysical studies, and hence to serve as the basis
for optimization ofimage quality. In this paper, we consider the
task of detection of a weak signal in a noisy image. The
mathematical observers considered include the ideal Bayesian,
the nonprewhitening matched fiter, a model based on linear-
discriminant analysis and referred to as the Hotelling observer,
and the Hotelling and Bayesian observers modified to account
for the spatial-frequency-selective channels in the human visual
system. The theory behind these observer models is briefly
reviewed, and several psychophysical studies relating to the
choice among them are summarized. Only the Hoteiling model
with channels is mathematically tractable in all cases consid-
ered here and capable of accounting for all of these data. This
model requires no adjustment of parameters to fit the data and
is relatively insensitive to the details of the channel mechanism.
We therefore suggest it as a useful model observer for the
purpose of assessing and optimizing image quality with respect
to simple detection tasks.

Image quality, for scientific and medical purposes, can be
defined in terms of how well desired information can be
extracted from the image. In other words, image quality is
measured by the performance of some "observer" on some
specific task (1-3). The observer can be a human, such as a
physician trying to make a diagnosis, or it can be a mathe-
matical model or a computer algorithm. The tasks can be
divided generically into classification and estimation tasks
(4). In medical applications, an example of a classification
task would be lesion detection, while an estimation task
might be determination of the volume of blood expelled from
the heart on each beat.
For classification tasks performed by a human observer,

psychophysical studies and receiver operating characteristic
(ROC) analysis provide a reproducible, quantitative measure
ofimage quality (2, 3, 5), but such studies are time consuming
and require large numbers of images. Moreover, they do not
provide an easy way to see how image quality is related to
various parameters of the imaging system or processing
algorithm. For these reasons, there is considerable interest,
especially in the radiological literature (6-8), in mathematical
model observers. If the ultimate observer will be a human
rather than a machine, the objective of the model is to predict
accurately the performance of the human. Then the model
observer can be used for system evaluation and optimization
with some assurance that the system that is best for the model
is also best for a human. Model observers may also be used
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either to replace the human entirely or to augment human
performance (9, 10), but in this paper we focus on using the
models to predict psychophysical results.

Early efforts on model observers for this purpose concen-
trated on the ideal Bayesian observer (6, 11-14), which sets
an upper bound to the performance of any observer, includ-
ing the human. Moreover, there are certain tasks for which
the performance of the human observer correlates very well
with that of the ideal observer. An important example is
detection of a nonrandom signal (or discrimination between
two nonrandom signals) in Gaussian noise. For this task, the
strategy of the ideal observer is to perform a linear filtering
operation on the image and to compare the result to a
threshold in order to make a decision. Since the filter is linear,
it is straightforward to calculate the performance of the ideal
observer and to compare it to that of the human.
The performance of the ideal observer on binary (two-

alternative) tasks is quantified by a detectability index didew,
defined below, which can be calculated from the character-
istics of the signal and noise. A similar performance index for
the human, denoted dhuman, can be derived from psychophys-
ical data, and an efficiency for the human observer (12, 13)
relative to the ideal can be defined as (dhuman/dideal)2. If the
noise is uncorrelated (so-called "white" noise) or has only
positive correlations induced by low-pass filtering, this effi-
ciency has been found to be fairly consistently around 50%
(14). If the noise has negative correlations induced by high-
pass or bandpass flltering, however, the efficiency of the
human can be much less (15, 16), and it can depend in a
complicated way on the noise characteristics. Thus, the ideal
observer has relatively little predictive value for human
performance in this kind of noise.
Another drawback to the ideal observer is that it may not

be possible to calculate its performance. If the noise is not
Gaussian or if the signal or the background on which it is
superimposed is random, then the ideal-observer strategy is
to calculate a quantity called the likelihood ratio, which is a
nonlinear function of the image data. In many realistic
imaging situations, we do not have sufficient information
about the data statistics to calculate the likelihood ratio or the
detection performance associated with it, so the ideal ob-
server is simply not an option.
When the ideal observer is either mathematically intrac-

table or does not predict human performance, we must resort
to other model observers. Ones that have been suggested in
the radiology literature include a nonprewhitening matched
filter (NPWMF) (17), a modified NPWMF incorporating the
transfer characteristics of the human eye (18, 19, §), an ideal
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observer handicapped by spatial-frequency-selective chan-
nels on the front end (20), an optimum linear discriminant
referred to as the Hotelling observer (21-25), and the Ho-
telling observer with spatial-frequency-selective channels
(26). It is the goal of this paper to review the mathematics of
these potential model observers and some of the psycho-
physical evidence that relates to the choice among them.

THEORY
Ideal Observer. A digital image consisting ofM pixels can

be represented as an M x 1 column vector g. The image is a
random vector both because of measurement noise in the
imaging system and because the objects being imaged are
themselves random. We assume that the task of interest is to
observe a particular image g and use it to classify the
corresponding object f that produced the image into one of
two classes (e.g., normal vs. abnormal or lesion present vs.
lesion absent). The ideal observer performs this task (11) by
first computing a scalar test statistic called the likelihood
ratio L(g), or equivalently its logarithm Aidea,(g), defined by

kideal(g) log[L(g)] = log[pg2)
where p(glk) is the probability density of g given that it was
produced by an object in class k (where k = 1 or 2). The
classification is performed by comparing this test statistic to
a threshold At; if A(g) > At, f is said to belong to class 1,
whereas otherwise it is classified into class 2.
An important special case of binary classification is simple

signal detection, where the object consists of a nonrandom
background on which some weak, nonrandom signal can be
superimposed. We refer to this case as SKE/BKE (signal
known exactly/background known exactly). The measure-
ment noise, the only source of randomness in this problem,
can often be modeled as a correlated multivariate Gaussian
process with the same covariance matrix K for both classes.
With these assumptions, Aidea,(g) is given by (11)

Apw(g) = (g2 - g1)'K1g, [2]

where gk is the mean image for class k, and the superscript t
denotes a matrix transpose. The difference in means g2 - gl
is the signal to be detected, so the ideal observer first filters
the image with the matrix operator K-1 and then performs a
matched filtering operation by taking the scalar product with
the signal. This is equivalent to operating on both the data and
the signal with K-1/2, then forming the scalar product of the
two preprocessed vectors. Since K-1/2 serves to remove the
correlations between the elements of g, it is often called a
prewhitening operation, and Apw(g) as calculated from Eq. 2
is the output of a prewhitening matched filter. Note that
Apw(g) is linear in g.
Except for this Gaussian SKE/BKE case, the log-

likelihood ratio is often very difficult to determine and a
highly nonlinear function of g. In particular, if there is any
randomness in the objects being imaged or the signal to be
detected, the log-likelihood ratio is usually nonlinear. With
rare exceptions, it is not possible to calculate the ideal-
observer test statistic in these cases.
Performance Measures. We presume that any observer

(including the human) makes a decision by computing some
test statistic A(g) and comparing it to a decision threshold. For
definiteness, we refer to class 1 as the signal-present or
positive case, so the decision is "positive" if A(g) exceeds the
decision threshold. If the object that produced the image was
actually in class 1, we call the positive decision a true positive
(TP), while otherwise it is a false positive (FP). The decision
threshold controls the trade-off between TP and FP deci-

sions. A plot of TP rate vs. FP rate as the threshold is varied
is called a ROC curve, and the area under the ROC curve,
denoted AUC, can be adopted as a figure of merit for the data
set (1-3). This figure of merit ranges from 0.5 for a worthless
test to 1.0 for a perfect one.
Another useful figure of merit is the signal-to-noise ratio

associated with the test statistic (1-3), often called a detect-
ability index and referred to as d' or da. We denote it simply
as d, with subscripts to designate particular observers, and
define it by

2 [E(A(g)12) - E(A(g)1)]2
1 1
- var(A(g)l1) + - var(A(g)12)
2 2

[3]

where E(A(g)lk) is the conditional mean of the test statistic
A(g) given that g comes from class k, while var(A(g)|k) is the
corresponding conditional variance. If A(g) obeys Gaussian
statistics, d is related to the AUC by

1 1 /d(
AUC = - + - erf 9

2 2 <2,
[4]

where erf(d/2) is the error function (2). By use of this
equation, d for the human observer can be derived from the
ROC curve without knowledge of the specific test statistic.

Linear Discriminants. Since the log-likelihood ratio is usu-
ally mathematically intractable when it is a nonlinear function
of g, it is natural to consider linear discriminants in which the
test statistic is constrained from the outset to be linear. A
general linear test statistic is a scalar product of the form Alin
= utg, and the objective of discriminant analysis is to choose
the discriminant function u in such a way as to maximize
performance of the classification task. If one has available a
training set of data vectors of known classification, the
optimum u was determined by Fisher in 1936 (27).
A closely related concept is that of class separability. In

1931, Hotelling (28) proposed a measure called T2 to test the
null hypothesis that the two samples of random vectors were
drawn from populations with the same mean vector. If there
is a difference in means of the two populations, T2 is a
quantitative estimate of how large it is. Later work showed
the connection between T2 and linear discriminants. Fisher's
discriminant is a way of calculating a scalar test statistic that
preserves the class separability inherent in the data, and the
d figure of merit for the Fisher discriminant is proportional to
T.
One conceptual way in which these ideas might be applied

to image quality would be to draw sample images from two
classes, compute T2 from the pixel values, and use it to
estimate the separability ofthe two classes with respect to the
particular imaging system under study. Different imaging
systems would yield different T2 values, and we could say
that the system that gave the largest separability, as quanti-
fied by T2, was the best for that particular classification task.
Equivalently, that system would be the one that gave best
performance when the observer was the Fisher linear dis-
criminant.

Unfortunately this approach does not work in practice.
Calculation of either Hotelling's T2 or the Fisher discriminant
from a training set requires inverting a sample covariance
matrix, but the inverse does not exist unless the number of
random vectors in the sample exceeds the number of ele-
ments in each vector. With images, that means that the
number of images must exceed the number of pixels in each
image, a condition that is virtually impossible to achieve with
images of any reasonable size. In pattern recognition, this
dimensionality problem is dealt with by extracting a small
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number of features from the images and calculating the linear
discriminant from the features rather than from the original
pixel values. This approach has not found use in image-
quality assessment, probably because there is no general
theory to guide feature selection.
The Hotelling Observer. To overcome the dimensionality

problem, we use simulated images, for which it is often
possible to calculate the ensemble covariance matrices or at
least to get good, full-rank estimates of them. If ensemble
covariance matrices are available, the ensemble analog of
Hotelling's T2 can be used as a figure of merit for image
quality (21-24). Denoted J, this metric can be regarded as the
limit of T2 when the number of sample images in each class
approaches infinity. Specific examples ofhow J is calculated
are given in refs. 23, 29, and 30.
To give a more precise definition of J, we define two

"scatter matrices" Si and S2. The interclass scatter matrix S,
which measures the separation of the two class means, is
defined for binary problems by

S = PlP2(g2 - g,)(g2 - g0t, [5]

where Pk is the probability of occurrence of class k (k = 1,2),
and g-k iS the class mean for the kth class.
The intraclass scatter matrix S2 is the arithmetic average of

the ensemble covariance matrices for the two classes. It is
given by

2 2
S2 - PkKk = >Pk((g- k)(( k- )k, [6]

where Kk is the ensemble covariance matrix of the kth class,
and the angular brackets denote a full ensemble average over
all objects in class k and all realizations of the measurement
noise.

In terms ofthese scatter matrices, a measure of (ensemble)
class separability called the Hotelling trace J is defined by
(22, 23)

J = tr(SjS1), [7]

where tr denotes the trace of the matrix. Hotelling's T2 has
exactly the same structure as J but with sample means and
covariance matrices in place of the ensemble ones. A key
difference is that the ensemble S2 matrix will usually be
invertible, while the sample one will usually not be.
The linear test statistic associated with J is given by (30)

AHot(g) = (g2 - g)tS2 1g. [8]

This form is quite similar to that for the Fisher discriminant
except that ensemble means and covariances appear in place
of sample ones.
Comparing Eq. 8 with Eq. 2, we see that the Hotelling test

statistic has the same form as a prewhitening matched filter,
which is the ideal observer for SKE/BKE problems. The
main difference is that AHot uses Sj1 as the prewhitening filter
while Apw uses K-1. In SKE/BKE problems, the only source
of randomness is the measurement noise, so S2 = K in that
case and the Hotelling observer is in fact ideal. More gener-
ally, however, the S2 matrix includes object variability, and
the linear Hotelling test statistic is not equivalent to the
nonlinear ideal-observer test statistic.

Ifwe assume that AHot obeys Gaussian statistics, which can
often be argued from the central-limit theorem, J is related to
d by (23)

J = PlP2(dHot)2. [9]

NPW Observers. To devise a linear test statistic to predict
the performance ofhuman observers, it might be desirable to

build in some characteristics of the human visual system.
There is some evidence that humans cannot prewhiten cor-
related noise (14-17), so a number of workers have used the
so-called NPWMF, with test statistic given by

ANPW(g) = (g2 - g1)'g. [10]

This test statistic is very easy to compute. No detailed
knowledge of the noise statistics is needed, and the observer
merely forms the scalar product of the mean difference image
g2 - gl and the image under test. In SKE/BKE problems with
nonwhite noise, the performance (d) of the NPW observer is
necessarily worse than that of the ideal prewhitening ob-
server; how much worse depends on the nature of the noise
correlations.
Eye Models. Another characteristic of the visual system

that can be incorporated into the observer models is its
modulation transfer function (MTF). If we ignore nonlinear-
ities in the visual system, which is probably valid for low-
contrast images, this transfer characteristic can be described
by a matrix. The simplest model, treating the eye as a linear,
shift-invariant filter, uses a square matrix E of the form
F-'MF, where F represents the two-dimensional discrete
Fourier transform and M specifies the MTF. Any of the
observer models discussed above can incorporate the eye
model by assuming that the test statistic is computed not from
the original data vector g but rather from a modified vector
Eg. This modification does not affect the performance of the
ideal or Hotelling observer ifE is invertible, but it can affect
the NPW model (18, 19).

Channels. A somewhat different characteristic ofthe visual
system is spatial-frequency-selective channels. It is known
that individual neurons in the visual cortex are responsive to
grating stimuli in a certain band of two-dimensional spatial
frequencies (31). Detection of a weak stimulus within one of
these bands is masked by another, stronger, grating only if
the two stimuli are within the same band. This observation
suggests that the neuron not only functions as a bandpass
filter but also computes the integral of the filter output over
the band (32); if it were simply a bandpass filter, the human
observer could still distinguish the signal to be detected from
the masking stimulus. With the integration step, however, all
stimuli within the same band are added together, and there is
potentially a large loss of information in going through the
channels.
As with the eye MTF, the simplest mathematical descrip-

tion of channels (15, 20) is a matrix V, but there is an
important difference. Since many different input spatial fre-
quencies contribute to each channel output, the matrix V,
unlike E, is highly rectangular and hence not invertible. Even
the ideal observer suffers a loss of performance if it has to
operate on Vg instead of g.

EXPERIMENTAL STUDIES
In this section we review a number of psychophysical stud-
ies, carried out at the University of Arizona, that relate to the
choice of a model observer. The specific images considered
were medical t-ray images produced by a collimator or
pinhole, but the results are certainly not particular to y-ray
imaging. All of the studies were carried out with the same
methods. Eight to 10 observers viewed each of the images
and assigned a certainty to the presence of a signal by means
of a six-point rating scale. A ROC curve was calculated for
each observer, AUC and dhum. were derived, and the results
were averaged over observers to get the final performance
figures. Details of the procedure can be found in refs. 15, 22,
and 31.

Correlated Noise. To address the question of whether the
human observer could prewhiten the noise in SKE/BKE
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problems, Myers et al. (15, 16) created a set of images with
the same d for the ideal observer but with different degrees
of noise correlation. In each case, the object being imaged
was a simple flat background, and the task was to detect a
weak, nonrandom signal that might be superimposed on the
background. Each object was filtered by a low-pass filter
representing predetection blur due to the collimator, and
Poisson noise in the detection process was modeled by
adding uncorrelated noise to the blurred image. The resulting
noisy image was passed through a second fiter, representing
postdetection digital processing of the image.
To produce severely nonwhite noise, Myers chose the

transfer function of the second filter to be given approxi-
mately by

P2(p) = p'/2exp(-I3p2), [11]

where p is the two-dimensional spatial-frequency vector, p is
its magnitude, and 6 and n are constants. Since the power
spectral density S(p) of filtered white noise is proportional to
the squared modulus of the filter transfer function, S(p) had
the form pnexp(-2,3p2). The noise autocorrelation function
[the Fourier transform of S(p)] was therefore determined
only by the second filter, while the overall transfer function
of the system was the product of the transfer functions of the
two filters. To focus on the noise correlations, the overall
transfer function was constrained to be constant. The noise
level was adjusted so that d for the ideal observer remained
constant regardless of the exponent n. Since the task was
SKE/BKE, S2 was the same as K, and the ideal observer and
the Hotelling observer for this study were identical and given
by the prewhitening matched filter of Eq. 2.
The results of the psychophysical studies (15, 16) are

summarized in Fig. 1A, where it is seen that dhuman fell off
dramatically as the noise exponent n increased from 1 to 4.
Since dideW was constant, this result indicated that the effi-
ciency of the human relative to the ideal varied by almost a
factor of 100, ruling out the prewhitening ideal/Hotelling
model as a predictor of human performance for this task.

Fig. 1B shows the predictions of several other model
observers for this problem. Included are the simple NPWMF
and four versions of an ideal observer operating on image

3

1

0

A

data prefiltered through channels as described above. The
channels did not overlap in the frequency domain and had
abrupt cutoffs, and a simple integral of the amplitude without
any nonlinear rectification was performed after bandpass
filtering in each channel. The bandwidth of each channel was
proportional to its center frequency, and the different points
in the figure are for different fractional bandwidths and
starting frequency of the lowest channel. All of the channel
models considered as well as the NPW model predict the
behavior found in the psychophysical studies: strong de-
crease of dhuman with increasing n. On this SKE/BKE task
and a variety of others, the predictions of the channel models
did not depend strongly on the details ofthe channels, and the
channel models were virtually indistinguishable from the
NPW model (20). Thus, the prewhitening ideal and Hotelling
observers do not predict human performance for this task,
while the NPW model and any of a variety of channelized
ideal-observer models do so very well.
Random Signals and Backgrounds. To move away from

SKE/BKE problems and investigate the effects of signal and
background randomness, Fiete et al. (23) created a simple
two-dimensional phantom of random, overlapping ellipses,
roughly representing a liver. The task was to detect a small
cold lesion of random size, shape, and contrast. The images
were blurred with Gaussian blur functions of different widths,
and Gaussian noise of various amplitudes was added; 32
normal and 32 abnormal images were generated for each of
nine combinations of blur width and noise level.
Because of the object randomness, the ideal-observer

performance was not calculable, but that of the Hotelling
observer was. There was no postdetection processing, so the
noise would have been uncorrelated if the object had been
constant. The object variability, however, produced corre-
lations when the whole ensemble of objects was considered,
necessitating the use of the S-j1 prewhitening filter of Eq. 8.
With some approximations, described by Fiete et al. (23, 24),
it was possible to calculate both the test statistic and the
performance of the Hotelling observer. Psychophysical stud-
ies were performed, and dhuman correlated extremely well
with the dHOt (r - 0.98).

Later, a more realistic extension of this study was per-
formed, with the objective of determining the optimal colli-
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FIG. 1. Results from Myers et al. (15, 16) on SKE detection in correlated noise. (A) Psychophysical d values (here denoted d') derived from
ROC curves vs. the noise exponent n (see Eq. 11). (B) Theoretical predictions of the signal-to-noise ratio (SNR) of several model observers for
this task. SNR is calculated directly from Eq. 4 in the text, while the psychophysical value is derived by measuring AUC and inverting Eq. 3;
the two quantities should be equal if the model is an accurate predictor of human performance. In this figure, the models considered are the
NPWMF (+) and four different channelized ideal-observer models (o, *, A, A). The channel models differ in the fractional bandwidth of the
channels (a) and minimum frequency of the lowest channel (Pc). The five models considered here give very similar predictions, all of them
showing the large fall-off in performance with n seen in the psychophysical data.
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mator to use in planar radiocolloid imaging of the liver (24,
33). In this study, three-dimensional mathematical liver phan-
toms (34) were used to model a healthy class, while another
group of mathematical phantoms with elliptical cold regions
in the liver simulated a diseased class. There was consider-
able randomness in both the liver background and the signal
to be detected. Images of these objects through parallel-hole
collimators with various bore diameters and bore lengths
were calculated. The Hotelling trace J was calculated from
these images for each collimator, and psychophysical studies
were performed. The results again showed a good correlation
between human and Hotelling performance.
Lumpy Backgrounds. The next study in this series, per-

formed by Rolland and Barrett (35, 36), considered detection
of an exactly known signal on a random, spatially inhomo-
geneous background, which we refer to as a lumpy back-
ground. In contrast to the Fiete studies, the background in
this case was not intended to represent any realistic medical
object. Instead it was a stationary random process with a
Gaussian autocorrelation function, which made it possible to
calculate the performance of the Hotelling observer without
any approximations (29, 36, 37). The objects being imaged,

consisting of random background samples plus a nonrandom
signal in half of the cases, were imaged through a pinhole
aperture. The main variables were the diameter of the pin-
hole, which controlled both the blur and the noise level in the
images, and the exposure time, which affected only the noise
level and not the blur.

Since the performance of the ideal observer was not calcu-
lable for this problem, we compared the Hotelling and NPW
models. As in the Fiete studies, there was no postdetection
processing, so there were no noise correlations for a single
realization of the background. Nevertheless, there were strong
correlations when the whole ensemble ofrandom backgrounds
was considered, and the prewhitening operation (Si-1) made a
large difference in calculated observer performance (29).

Fig. 2 A and C shows the performance of the two model
observers as a function of pinhole diameter and exposure
time for three different levels of background lumpiness,
including zero, which corresponds to a nonrandom, spatially
homogeneous background. Fig. 2 B and D shows the results
of the psychophysical study by Rolland and Barrett (35, 36).
In interpreting this figure, it must be kept in mind that in the
case of zero lumpiness there is no noise correlation at all, so
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FIG. 2. Results from Rolland and Barrett (35, 36) on SKE detection of a signal superimposed on a random, spatially inhomogeneous
background, modeled as a stationary random process. The inhomogeneity ("lumpiness") of the background is specified by the power spectral
density of the background Wf(p) evaluated at zero spatial frequency (p = 0). The correlation length of the background was fixed and equal to
3 times the width of the signal to be detected. Theoretical results are shown in A and C and comparable psychophysical data are shown in B
and D. The independent variables are pinhole diameter (A and B) or exposure time (C and D). In all cases, the vertical axes are detectability
indices d, here denoted da. For the theoretical curves, two model observers are considered: Hotelling (solid lines) and NPW (dashed lines). If
the lumpiness Wf(O) = 0, these two models are identical, and the predictions are given by the upper curves in A and C. For nonzero lumpiness,
however, there is a large difference in the predictions of the two models, with the NPW giving consistently lower performance. The
psychophysical data in B and D show the same qualitative behavior as the Hotelling model (compare A to B and C to D).
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FIG. 3. Images used in various psychophysical studies discussed in this paper. (Top) Images used by Myers et al. (15, 16); the noise exponent
n varies from 1 at left to 4 at right. The dfor the ideal observer was held constant, but the signal, readily visible at the top left (n = 1), is not perceptible
for higher values of n. (Middle) Images used by Rolland and Barrett (35, 36). Here the lumpiness Wf(O) increases from left to right. (Bottom) Images
used by Yao and Barrett (26). Here the lumpiness Wf(O) is fixed at a nonzero value while the noise exponent n goes from 1 at left to 4 at right.

the NPW and Hotelling observers coincide (and are also
ideal). Thus, the upper theoretical curves in Fig. 2 A and C
are applicable to both of these observers.
The general trends in the psychophysical data are in excel-

lent accord with the Hotelling model. For both human and
Hotelling observers, there is a clear optimum in d vs. pinhole
diameter, an effect not predicted by the NPW model. The
performance ofboth human and Hoteiling observers increases
with exposure time, while that of the NPW observer does not.
Furthermore, the introduction of background lumpiness de-
grades the performance of the NPW observer, relative to the
zero-lumpiness case, far more than it degrades either the
human or the Hotelling observer. Overall, the efficiency ofthe
human relative to the Hotelling model, (dhuman/dHot)2, is
substantially constant, while (dhuman/dNPw)2 varies by almost
2 orders of magnitude over the range of parameters explored
in Fig. 2.
A second study using the lumpy-background paradigm was

reported by Yao et al.¶ They noted that the performance of
the Hotelling observer is determined solely by the mean
vectors and covariance matrices and does not depend on the
detailed shape of the probability density function for the grey
levels in the image. To test whether this prediction was also
true for humans, Yao constructed three sets of backgrounds
with the same means and covariances (hence the same S, and
S2) but with different grey-level histograms. The Hotelling
performance was the same for all three sets by construction,
and Yao's psychophysical study showed that human perfor-
mance was also the same within experimental error.
Can Humans Prewhiten? The studies by Rolland and Bar-

rett (35, 36) and Yao and Barrett (26) lead to a clear and
unequivocal conclusion: The psychophysical results for SKE
signal detection in a lumpy background correlate very well
with the prewhitening model (Hotelling in this case) and not
at all with the NPW model. This conclusion, though de-

IYao, J., Barrett, H. H. & Rolland, J. P., Oral Presentation, Optical
Society ofAmerica Annual Meeting, Nov. 3-8, 1991, San Jose, CA.

manded by the data, is in striking contrast to that derived
from the work of Myers et al. (15, 16), which gives an equally
unequivocal conclusion: For SKE/BKE detection tasks with
noise correlations induced by postdetection filtering, the
psychophysical data correlate very well with the NPW model
and not at all with the ideal/Hotelling prewhitening matched
filter. These two sets of studies, performed in the same
laboratory with the same methods, thus give opposite an-
swers to the question of whether humans can prewhiten
correlated noise. To be sure, the nature of the correlations is
somewhat different in the two cases. In the work ofMyers the
correlation produced by the second filter would be visible in
a single image (Fig. 3), while in the Rolland and Yao work it
would be evident only when an ensemble of images was
analyzed. The prewhitening filter also has a different form,
K-' in Myers' work and the more general S- 1 for Rolland and
Yao. Nevertheless, the striking difference in the results must
be resolved before we can adopt a single model observer for
assessment of image quality.
A Synthesis: The Channelized Hotelling Model. Since the

Myers et al. (15, 16), Rolland and Barrett (35, 36), and Yao
et al. experiments had correlations of different origin, Yao
and Barrett performed another experiment (26) in which both
kinds of correlation were present. The task was again detec-
tion of a known signal on a lumpy background, but the same
postprocessing filters used by Myers et al. (15, 16) were also
employed. The experimental conditions included zero lump-
iness, reproducing the setup used by Myers et al., and noise
exponent n = 0, reproducing the setup used by Rolland and
Barrett (35, 36).

Since the Myers results had been equally well predicted by
the somewhat ad hoc NPW model and the physiologically
based channel models, Yao considered addition of a channel
mechanism to the Hotelling model. The nonoverlapping
channels had constant fractional bandwidths, abrupt cutoffs
and a simple amplitude integrationjust as in the Myers model.
The scatter matrices Si and S2 as well as AHOt and dH.t were
calculated on the basis of Vg rather than g.
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0.0 1.0 2.0 3.0
dhuman

FIG. 4. Compilation of psychophysical data obtained by Myers et

al. (15, 16) (n), Rolland and Barrett (35, 36) (v), and Yaoand Barrett (26)
(o) plotted vs. the predictions of the channelized Hotelling model. This
common model fits all three data sets within experimental error.

The psychophysical results obtained in this study (26) are

plotted in Fig. 4 along with the results of Myers (15, 16) and
Rolland and Barrett (35, 36). In each case a plot of dhuman
against the d for the channelized Hotelling model (dchlnei) is
given. All three sets of results are found to fall closely on a

straight line, indicating that the channelized Hotelling model
is capable of predicting human performance with both kinds
of correlation separately or together.

DISCUSSION AND CONCLUSIONS
In this paper, we have considered a number of possible model
observers for the task of detection of a "blob"-i.e., a

spatially compact signal of relatively low contrast. In some

cases, the images were more-or-less realistic simulations of
t-ray images in nuclear medicine, and the blob represented a

tumor or other lesion. In other cases, however, the choice of
image was dictated by the desire to produce large and easily
detectable differences between the predictions of competing
models.

In contrast to most psychophysical investigations, our goal
was not so much to understand the human visual system as

to devise a useful figure of merit for quantitative assessment
and optimization of image quality. The ideal Bayesian ob-
server cannot be widely used for this purpose for two
reasons: It is not mathematically tractable if there is signif-
icant object randomness, and it does not predict human
performance in the presence of correlated noise.
To overcome the first objection, we introduced the Ho-

telling observer, a linear-discriminant model that is often
tractable even when the ideal observer is not. In all situations
we investigated, the Hotelling model was a good predictor of
human performance if there was no postdetection filter to
introduce noise correlations. Based on some theoretical
studies not reported here, we also suspect that the Hotelling
model will be successful with postdetection filtering if it has
a low-pass character. With high-pass or bandpass filtering,
however, large deviations between human and Hotelling
performance were found. In the work of Myers et al. (15, 16),
the efficiency of the human relative to the ideal fell by 2
orders of magnitude as the degree of high-pass correlation (as
measured by the noise exponent n) was increased. The ideal
observer, identical with the Hotelling observer on these
tasks, did not fit these data, but the NPW model fit very well.

On the other hand, the NPW model did not predict any of
the salient features of Rolland's data on SKE detection on a
random background. In that work, the efficiency of the
human relative to the NPW model varied by some 2 orders of
magnitude. The Hotelling model, however, accounted for all
of the qualitative behavior of the results and gave an effi-
ciency that was much more nearly constant. The Hotelling
model also worked quite well in predicting human perfor-
mance on realistic tumor-detection tasks in simulated liver
images.
The apparent contradiction between these two sets of

results is resolved by incorporating channels into the Hotell-
ing model. The resulting channelized Hotelling model fits a
large body of data without adjustment of parameters. The
channels have very little effect on performance with white or
low-pass noise, so the Hotelling and channelized Hotelling
models appear to work equally well in those cases. With noise
correlations produced by high-pass filtering, the channels
cause the same kind of degradation in performance as does
the ad hoc assumption that the human cannot prewhiten.
Thus, the channelized Hotelling model seems to be in good
accord with all available psychophysical evidence for SKE/
BKE blob-detection tasks, with or without noise correla-
tions. It also accounts for all of our data on lumpy back-
grounds, including images processed through high-pass fil-
ters.
Of course, we can never rule out the possibility that the

same data could be explained by other models. In particular,
we have not investigated the use of various models for the
MTF of the eye in conjunction with the NPW assumption.
Even if other models could be found to fit the data, however,
the channelized Hotelling model would remain attractive on
several accounts. It is mathematically tractable in a wide
variety of problems, including those with realistic object and
signal models. It accounts for arbitrary random variability in
the object and signal, and it allows any form of postprocess-
ing, including high-pass filtering and even nonlinear process-
ing. The channels have a physiological basis, and the pre-
dictions of the model are robust with respect to the details of
the channels.

In summary, we offer the working hypothesis that the
channelized Hotelling observer model can be used as a
general tool for assessment of image quality with respect to
detection and discrimination tasks, and we encourage further
psychophysical investigations to discover the limits of its
applicability. In particular, further studies to compare the
performance of channelized Hotelling and human observers
with different kinds of signal and background variability
would be worthwhile. For example, the mathematical frame-
work of the channelized Hotelling model allows us to analyze
the effects of varying signal size, signal location, or back-
ground correlation structure. It remains an open question
whether the mathematical model and the human observer will
behave the same way in response to these variations.

Note Added in Proof. Burgess (38) has recently considered a variety
of eye models used in conjunction with a NPW observer. He
compared the predictions of these models to the data of Rolland and
Barrett and found that he could account for many, but not all,
features of the data.

We have benefited greatly from discussions with Robert Wagner,
David Brown, and Arthur Burgess. This work was supported in part
by the National Cancer Institute under Grants P01 CA23417 and
RO1 CA52643.
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