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S1 Sensitivity of the estimation results to the
value of the parameter ε

Section 2.1 of the main text describes the practical implementation of the reg-
ularization parameter λ, involving the introduction of a parameter ε in the
discrete differentiation matrix Lu. When the value of ε is not carefully cho-
sen, it introduces an unwanted penalty on the initial values of the variable to
estimate. This may modify the range of values of λ for which the matrix is in-
vertible and thus influence the estimation results. In this section we investigate
the sensitivity of the estimation results to the value of ε and suggest how to
proceed in finding an appropriate value.

As an illustration, we solved the growth rate estimation problem presented in
Figure S1 for several different values of ε. The simulated data (in green in panel
A) represent the bacterial population volume obtained from the growth rate
(dashed line in the same panel), with added noise having the same properties as
in the reporter gene data set in Figure 3. For ε = 1, we observe as expected that
the estimation of µ0 is negatively biased. The penalization parameter λ = λgcv,
chosen by generalized cross-validation, minimizes the error ErrReg(λ) associated
with the regularized problem, defined as the right-hand side of Equation 8 in
the main text (dashed vertical line in panel F). For ε between 10−2 and 10−5,
the estimation is unbiased and corresponds well to the real input (panels B-C).
The estimation is not sensible to ε in this interval and the value of λgcv is of the
same order of magnitude as for the case ε = 1. However, for even lower values
of ε (panels D-E), the same value of λgcv makes the problem ill-posed (hence
the peaks in ErrReg(λ) in panels I-J). As a consequence, the value of λgcv is
aberrant and the resulting estimations are off the mark.

Throughout the paper we used ε = 10−5 and verified in each instance the
appropriateness of this choice by a sensitivity analysis of the type shown in
Figure S1. This procedure is recommended more generally.
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Figure S1: Effect of parameter ε on growth rate estimation from in-
silico data. The simulated data (in green) for known input µ(t) (dashed line)
shown in A. The estimation results (solid line) for different values of ε are shown
in A-E. The corresponding error profile for the regularized problem, ErrReg(λ),
and the minimal value λgcv for different choices of ε are shown in F-J.
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S2 Linear inversion problems with linear con-
straints

It can be useful to impose constraints on the values of the estimated w, to ensure
that they are comprised between certain bounds. Equation 6 in the main text
can be reformulated as follows, using the definition of the discrete derivation
matrix Lw in the same section:

ŵ = argmin
w

‖Hww − ỹ‖22 + λ‖Lww‖22

= argmin
w

(Hww − ỹ)T (Hww − ỹ) + λ(Lww)T (Lww)

= argmin
w

wTHT
wHww − 2ỹTHww + ỹT ỹ + λwTLTwLww

= argmin
w

wT (HT
wHw + λLTwLw)w − 2ỹTHww.

To this quadratic minimization problem we can add a set of linear constraints
of the form

G1w = c, (S1)

G2w ≤ 0, (S2)

where G1,G2 are constant matrices and c a constant vector. In this paper
we want to ensure that the initial conditions (which represent quantities of
molecules or volumes) and the input variable (which represents a growth rate,
promoter activity, or protein concentration in Section 3 of the main text) is
positive. This corresponds to setting

(G1, c,G2) = (0,0, I).

Several solvers have been proposed for the general quadratic programming
problem, and in particular for the special case of ensuring positive solutions.
In this paper we used the solver cvxopt.solvers.qp from the Python mod-
ule cvxopt, which is well adapted to large-scale problems (Andersen et al.,
2012). Notice that it is not possible to use generalized cross-validation on the
constrained problem. Therefore, we first used GCV on the unconstrained prob-
lem to select the regularization parameter λ, and then solved the constrained
problem for that particular value of λ.

S3 Computation of observation matrices

The computation of the observation matrix Hw =
(
Hx0

Hu

)
defined in Sec-

tion 2.1 of the main text can be achieved in a straightforward way. The jth
column of Hx0

is the vector of values obtained by solving Equation 1 at times
(ti)1≤i≤Ny

, using u(t) = 0 and

x0 = (0, · · · , 0, 1︸︷︷︸
x0[j]

, 0, · · · , 0).
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The jth column of matrix Hu is obtained by solving the same system with
x0 = 0 and

u(t) = 1[τj ,τj+1[(t).

The computation of Hw can be performed using a numerical differential
equation solver, but this is usually time-consuming because of the large number
of ODE integrations required (n + Nu). An alternative is to use the explicit
solution of Equation 2 and exploit the specific form that Equation 1 takes when
estimating growth rate, promoter activity, and protein concentration. The latter
approach will be further developed in the remainder of this section.

S3.1 Explicit formula for the observation matrix for growth
rate estimation

In section Section 3.2 we proposed the following model as a basis for the esti-
mation of µ(t):

d

dt
(αV )(t) = Ṽ (t)µ(t). (S3)

This model admits the following general solution:

αV (t) = αV (0) +

∫ t

0

Ṽ (σ)µ(σ) dσ. (S4)

The observation matrix is of the form Hw =
(
Hx0

Hu

)
. Hx0 has di-

mensions 1×Ny and its values are obtained by computing Equation S4 at the
different observation times (ti)1≤i≤Ny

, with αV (0) = 1 and µ(t) = 0 for all t.
Therefore, we have

Hx0 =

1
...
1

 .

The element of Hu at position [i, j] is computed by evaluating Equation S4 at
time ti with αV (0) = 0 and

µ(t) = 1[τj ,τj+1[(t).

This leads to

Hu[i, j] =

∫ ti

0

Ṽ (σ) 1[τj ,τj+1[(σ) dσ =

{
0 if ti < τj ,∫min(ti,τj+1)

τj
Ṽ (σ) dσ otherwise.

The size of the intervals [τi, τi+1[, denoted by δτ , can be chosen arbitrarily small,
so we will suppose that the volume is constant on each interval. This allows
the expression above to be simplified and we obtain the following approximate
expression of Hu[i, j], which is used for the estimation of the growth rate in the
figures of the main text, and in the WellFARE package:

Hu[i, j] ' Ṽ (τj) max (0,min(ti − τj , δτ)) .
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S3.2 Efficient computation of the observation matrix for
promoter activity estimation

In the main text we presented the following ODE model for the expression of
the reporter gene:


d

dt
M(t) = kM a(t)V (t)− dM M(t) = k′M a(t)αV (t)− dM M(t),

d

dt
Ru(t) = kU M(t)− (dR + kR)Ru(t),

d

dt
R(t) = kRRu(t)− dRR(t),

where k′M = kM/α.
The observation matrix is of the form Hw =

(
Hx0

Hu

)
. The element of Hu

at position [i, j] is computed by solving the ODE system, with
(
M(0) Ru(0) R(0)

)
=

0 and
a(t) = 1[τj ,τj+1[(t),

and then evaluating R(t) at time-point ti. We can reformulate this as follows,
using the input-output system notation from Section 2.1 of the main text (Chen,
1970):

Hu[i, j] = R(ti,1[τj ,τj+1[,0).

Computing Hu in this way, however, would require the solution of as many
ODE systems as there are intervals [τj , τj+1[, typically on the order of 1000.

A more efficient procedure for computing Hu can be obtained by choosing a
suitable approximation. Assume that the intervals [τj , τj+1[ are of equal length
δτ and small compared to the characteristic variation time of V (t). As a conse-
quence, V (t) can be supposed constant over the interval [τj , τj+1[, and we can
use the following approximated system to compute the [i, j]th element of Hu:

d

dt
M(t) ' k′M αV (τj) 1[τj ,τj+1[(t)− dM M(t),

d

dt
Ru(t) = kU M(t)− (dR + kR)Ru(t),

d

dt
R(t) = kRRu(t)− dRR(t).

(S5)

It is easy to see that this system is linear in αV , so that we can write

R(ti,1[τj ,τj+1[,0) = αV (τj)R1(ti,1[τj ,τj+1[,0),

where R1 is the output of the system of Equation S5 with αV (τj) set to 1.
Because the coefficients of this system are time-invariant, we also have that

R1(ti,1[τj ,τj+1[,0) =

{
0 if ti < τj ,

R1(ti − τj ,1[0,δτ [,0) otherwise.

This leads to the following approximation of Hu[i, j]:

Hu[i, j] = R(ti,1[τj ,τj+1[,0) '

{
0 if ti < τj ,

Ṽ (τj)R1(ti − τj ,1[0,δτ [,0) otherwise.
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The advantage of this approximate method for computing Hu is that it requires
the ODE system of Equation S5 to be solved only once, replacing the term
αV (τj) 1[τj ,τj+1[(t) by 1[0,δτ [(t) and evaluating the output at all time-points ti,
instead of solving Nu ODEs.

S3.3 Computation of the observation matrix for promoter
activity estimation in a reduced gene expression model

In Section 3.3 of the main text, the production of mature GFP proteins was
described as a three-step process (transcription, translation, and maturation).
In this section we consider a simplified version of this model, which allows us to
explicitly formulate the observation matrix Hw as a function of the measured

signal
(
Ṽ (ti)

)
1≤i≤Ny

and the degradation constant dR.

When both transcription and maturation are fast as compared to the other
processes involved in the expression of the reporter gene, it can be assumed that
their effect on the dynamics of the folded reporter is negligible. In this case,
the entire process of synthesizing mature GFP can be lumped into a single step
and Equation 15 in the main text becomes:

d

dt
R(t) = k′R αV (t) a(t)− dRR(t), (S6)

where k′R denotes a lumped protein synthesis parameter.
The quantity of reporter protein R(t) can be explicitly formulated as a func-

tion of a(t) by solving Equation S6:

R(t) = R(0) e−dRt + e−dRt
∫ t

0

edRσk′R αV (σ) a(σ) dσ. (S7)

In other words, the promoter activity is linearly related to the amount of reporter
protein. In what follows, we set k′R = 1, which allows the promoter activity to
be estimated up to an unknown proportionality constant (Section S6).

The observation matrix Hw for the corresponding linear inversion problem
is of the general form Hw =

(
Hx0 Hu

)
, where Hx0

is given by:

Hx0
=


e−dRt0

e−dRt1

...

e−dRtNy

 .

The element of Hu at position [i, j] is computed by evaluating Equation S7 at
time ti for R(0) = 0 and a(t) = 1[τj ,τj+1[(t). This leads to

Hu[i, j] =

{
0 if ti < τj ,

e−dRti
∫min(τj+δτ,ti)

τj
edRσαV (σ) dσ otherwise,

(S8)

where δτ denotes the length of the time-interval [τj , τj+1[. We can exploit the
fact that δτ can be chosen arbitrarily small to simplify the integral by assuming
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that the volume is approximately constant over the time-interval considered:∫ min(τj+δτ,ti)

τj

edRσαV (σ) dσ ' αV (τj)

∫ min(τj+δτ,ti)

τj

edRσdσ

=
1

dR
αV (τj)

(
edR min(τj+δτ,ti) − edRτj

)
' 1

dR
Ṽ (τj)

(
edR min(τj+δτ,ti) − edRτj

)
.

As a consequence,

Hu[i, j] '

{
0 if ti < τj ,
1
dR
Ṽ (τj)

(
edR min(τj+δτ,ti) − edRτj

)
otherwise.

(S9)

The latter expression is used to compute promoter activities in the WellFARE
package.

S3.4 Explicit formula for the observation matrix for pro-
tein concentration estimation in a reduced gene ex-
pression model

In the main text we have presented the production of a protein of interest and its
reporter as multistep processes. The observation matrix allowing the estimation
of the protein concentration p(t) from the absorbance and fluorescence data can
be computed by means of the procedure in Section 2.2. In this section, like
in Section S3.3, we will simplify the problem by considering single-step gene
expression models, enabling an explicit formulation of the observation matrix.

Using the same notation as in Section S3.3, P ′(t) (defined in Section 3.4)
and R(t) are driven by the following one-step gene expression models:

d

dt
P ′(t) = k′P αV (t) a(t)− dP P ′(t), (S10)

d

dt
R(t) = k′R αV (t) a(t)− dRR(t), (S11)

p(t) = P ′(t)/ (αV (t)) (S12)

where k′P and k′R denote lumped protein synthesis parameters. Notice that the
degradation constants of the protein of interest (dP ) and the reporter protein
(dR) are different a priori.

This model enables R(t) to be directly expressed as a function of P ′(t). We
first derive the following expression of αV (t) a(t) from Equation S10:

αV (t) a(t) =
1

k′P

(
dP P

′(t) +
d

dt
P ′(t)

)
,

and then inject this expression into Equation S11:

d

dt
R(t) = K

(
dP P

′(t) +
d

dt
P ′(t)

)
− dRR(t),
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where K = k′R/k
′
P . The above differential equation for R(t), with input P ′(t),

can be solved exactly, yielding

R(t) = K P ′(t)︸ ︷︷ ︸
A(t)

+K (dR − dP ) e−dRt
∫ t

0

edRσ P ′(σ) dσ︸ ︷︷ ︸
B(t)

+ (R(0)−K P ′(0)) e−dRt︸ ︷︷ ︸
C(t)

.

(S13)
The terms A(t), B(t), C(t) in Equation S13 admit a simple interpretation. A(t)
shows that R(t) will, at least partly, follow the variations of P ′(t). This is to be
expected, as P ′(t) and R(t) are driven by the same promoter activity a(t). B(t)
is a correction term accounting for the difference in degradation constants of the
reporter protein and the protein of interest. C(t) accounts for the differences in
initial conditions P ′(0) and R(0). Equation S13 can be rewritten as

R(t) = R(0) e−dRt +K

(
αV (t) p(t)− αV (0) p(0)e−dRt

+(dR − dP ) e−dRt
∫ t

0

edRσ p(σ)αV (σ) dσ

)
.

(S14)

Note that this formulation shows the linear relationship between the output
R(t), the input p(t), and initial condition R(0), which correspond respectively
to y2(t), u(t), and x0,2 in Section 2.2 of the main text. Like in Section S3.3, we
assume that k′R = k′P = 1 to simplify computations and obtain a proportional
estimator for p(t) (Section S6).

The observation matrix for the estimation problem is of the general form
Hw =

(
Hx0 Hu

)
, where

Hx0 =


e−dRt0

e−dRt1

...

e−dRtNy

 ,

obtained by setting p(t) = 0 for all t and R(0) = 1. The element of Hu at
position [i, j] is computed by evaluating Equation S14 at time ti for R(0) = 0
and p(t) = 1[τj ,τj+1[(t). This leads to

Hu[i, j] =


0 if ti < τj ,

α V (ti) + (dR − dP ) e−dRti
∫ ti
τj
edRσ αV (σ) dσ if τj ≤ ti < τj+1,

(dR − dP ) e−dRti
∫ τj+1

τj
edRσ αV (σ) dσ if ti ≥ τj+1.

(S15)
In this expression we can use Ṽ instead of αV , and approximate the integral,

like in Section S3.3. This results in an approximate but practical formula for
Hu[i, j]:

Hu[i, j] =


0 if ti < τj ,

Ṽ (τj)

(
1 +

dR − dP
dR

(1− edR(τj−ti))

)
if τj ≤ ti < τj+1,

Ṽ (τj)
dR − dP
dR

(edR(τj+1−ti) − edR(τj−ti) if ti ≥ τj+1.

(S16)
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The latter expression is used to compute protein concentrations in the WellFARE
package.

S4 Reporter gene experiments: materials and
methods

The E. coli wild-type strain used in this study is the BW25113 strain (Baba
et al., 2006). The reporter strains were obtained by transforming the wild-type
strain with a reporter plasmid, bearing a transcriptional fusion of the crp, fis,
gyrA and acs promoter regions with the gfp reporter gene, and a promoterless
vector for background correction (Table 1). The reporter gene codes either for
a stable and fast-folding version of the GFP reporter (GFPmut2) or for a less
stable allele (GFPmut3). More information on the half-live and maturation
time can be found in (Berthoumieux et al., 2013).

Plasmid Characteristics Reference or source

pZEgfp Ampr, colE1 ori, gfpmut3 (de Jong et al., 2010)
pZEfis-gfp Ampr, colE1 ori, pfis-gfpmut3 (de Jong et al., 2010)

pZEgyrA-gfp Ampr, colE1 ori, pgyrA-gfpmut3 (Boyer et al., 2010)
pUA66gfp Kanr, pSC101 ori, gfpmut2 (Zaslaver et al., 2006)

pUA66crp-gfp Kanr, pSC101 ori, pcrp-gfpmut2 (Zaslaver et al., 2006)
pUA66acs-gfp Ampr, pSC101 ori, pacs-gfpmut2 (Baptist et al., 2013)

Table 1: Reporter plasmids used in this study.

Glycerol stocks (-80◦C) of the above-mentioned reporter strains were grown
overnight (about 15 h) at 37◦C, with shaking at 200 rpm, in M9 minimal medium
(Miller, 1972) supplemented with 0.3% glucose and mineral trace elements. For
plasmid-carrying strains, the growth medium was supplemented with 100 µg
ml−1 ampicilin or kanamycin. The overnight cultures were diluted into a 96-
well microplate, so as to obtain an adjusted initial OD600 of 0.1 for fis and
gyrA, 0.001 for crp and acs. The wells of the microplate contain M9 minimal
medium supplemented with 0.3% glucose, mineral trace elements, and 1.2%
of the buffering agent HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid) for maintaining physiological pH levels in the growth medium. No antibi-
otics were added at this stage. The wells were covered with 60 µl of mineral
oil to avoid evaporation. The microplate cultures were then grown for about
24 h at 37◦C, with agitation at regular intervals, in the Fusion microplate reader
(Perkin Elmer).

During a typical experimental run, we acquire about 110 readings each of
absorbance (600 nm) and fluorescence (485/520 nm). From the measured signal
we remove the background signals of absorbance and fluorescence measured
on wells containing growth medium only and strains carrying a promoterless
reporter plasmid, respectively (Figure S2).
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Figure S2: Experimental data for the reporter gene experiment with
the strain carrying the pUA66crp-gfp reporter plasmid, shown in
Figure 3 of the main text. A. Primary fluorescence data. The dotted line
indicates the auto-fluorescence curve measured on a strain carrying no reporter
gene, and is subtracted from the solid lines to obtain the fluorescence profiles
shown in Figure 3. B. Absorbance corrected by subtracting the (constant)
absorbance measured on a well containing only growth medium.

S5 Numerical evaluation of the linear inversion
methods

In this section we test the ability of the proposed linear inversion methods to
correctly estimate different shapes of growth rate, promoter activity, and protein
concentration profiles. We generated 100 absorbance and fluorescence data sets
for defined growth rate and promoter activity profiles, similar to those observed
for the gene acs in the reporter gene experiments in Section 3.1 of the main text
(Figure 3). In panel A the ability of the method to reconstruct different growth
rate profiles is tested, whereas panels B and C consider different promoter ac-
tivity and protein concentration profiles (with absorbance data from panel A1),
respectively. In every case considered, the methods succeed in providing an
almost unbiased estimate of the gene expression quantities.

We also compared the linear inversion methods with other methods, in par-
ticular indirect approaches that plug empirically smoothed versions of the data
into the measurement models (Figure 4 in the main text). Below we extend this
analysis, for the estimation of the growth rate from absorbance measurements,
by showing that increasing the smoothing parameter to reduce the variance of
the estimates introduces a strong bias (Figure S4). The growth rate is shown
as the dotted curve and the absorbance data are the same as in Figure 4 in the
main text.
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Figure S3: In-silico experiments for testing the ability of the linear
inversion methods to correctly estimate different growth rate, pro-
moter activity, and protein concentration profiles. The estimation re-
sults for growth rate, promoter activity, and protein concentration are shown in
panels A-C, respectively. The dotted lines show the profiles used for generat-
ing the 100 data sets, the grey solid lines example absorbance and fluorescence
time-series data, and the red solid line and the shaded area the mean ± one
standard deviation of the 100 estimations, respectively.

S6 Linear inversion when parameters in the gene
expression model are unknown

Equation 15 in the main text describes the gene expression model on which the
estimation methods are based:

d

dt
M(t) = k′Ma(t)α̂V (t)− dMM(t),

d

dt
Ru(t) = kUM(t)− (dR + kR)Ru(t),

d

dt
R(t) = kRRu(t)− dRR(t),

and we remind that R̃(ti) = βR(t) + ν (Equation 10 in the main text). The
constants k′M , kU , and β are generally unknown. In this section we show that
the profile of the promoter activity can still be estimated, up to an (unknown)
proportionality constant, using a linear inversion.

We consider the following transformed variables:

R∗(t) = βR(t), R∗u(t) = βRu(t), M∗(t) = kUβM(t), a∗(t) = kUk
′
Mβa(t).

Replacing the variablesM,Ru, R, a in the ODE system above by their starred
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Figure S4: Growth rate estimation by smoothing of the absorbance
measurements. The growth rate was computed from smoothed absorbance
measurements of the volume by means of Equation 12 in the main text. The
plots show the true value of the growth rate (dotted line), used to generate 100
absorbance data sets, and the mean (solid red line) ± one standard deviation
(shaded area) of the growth rate estimations. Different levels of smoothing of
the absorbance data were considered, using sliding windows of different length
(80, 160, and 240 data points), corresponding to the panels A-C, respectively.

counterpart we obtain the following system:
d

dt
M∗(t) = a∗(t)α̂V (t)− dMM∗(t),

d

dt
R∗u(t) = M∗(t)− (dR + kR)R∗u(t),

d

dt
R∗(t) = kRR

∗
u(t)− dRR∗(t).

Moreover, R̃(ti) = R∗(t) + ν. This system is equivalent to Equation 15 in the
main text when β = kU = k′M = 1 and can thus be used to estimate the
profile a∗(t), which is proportional to a(t) (the proportionality constant being
unknown).

The same approach can be applied to the gene expression system of Equa-
tion 17 in the main text to show that it is possible to obtain an estimator or
the profile of the protein concentration p(t) (up to an unknown proportionality
constant) in the absence of reliable values for the parameters kN and kP .

S7 Software implementation of the linear inver-
sion methods

The linear inversion methods discussed in this article have been implemented
in the Python library WellFARE and are available online through the web
application WellInverter . In this section we briefly describe WellFARE and
WellInverter , and we refer to the dedicated web pages for more information.

S7.1 The WellFARE Python Package

WellFARE (well Fluorescence Analysis for Reporter Experiments) is a Python
library released under an LGPL licence, implementing the methods for growth
rate, promoter activity and protein concentration estimation developed in the
main text. In addition, the library provides practical tools for the treatment of

12



data from reporter experiments, such as automated outlier removal, data syn-
chronization, and parsing of Excel files generated by the TECAN Infinite Pro
microplate reader. WellFARE uses extensively the Python core scientific li-
brary SciPy (Jones et al., 2001). The treated data can be exported in the form
of JSON objects (Crockford, 2006). Source code, documentation and installa-
tion instructions for the WellFARE library and its command-line and JSON
interfaces are available at the following address:

https://github.com/ibis-inria/wellfare

The code used to generate the figures of the main text is available in the
examples folder of the library.

S7.2 The WellInverter web application

The WellInverter web application provides online access to the linear inver-
sion methods without having to install the software locally. The server part of
WellInverter is based on the Python library WellFARE, the computational
core of the application. It also provides methods for managing experimental and
user data as well as storing analysis parameters in JavaScript Object Notation
(JSON) format (Crockford, 2006). The client part of WellInverter is the
graphical user interface of the application, accessible through a web browser.
It allows the user to upload, analyze, and visualize the results of a reporter
gene experiment as well as downloading the results for further treatment. The
client part is written in Javascript, and communicates with the server using
Ajax (Asynchronous JavaScript and XML) calls (Garrett, 2006). More infor-
mation on access to WellInverter and a tutorial are available at the following
address:

https://team.inria.fr/ibis/wellinverter

A test account has been opened with username guest and password guest2015.
The reporter gene data set on the server has been used in the main text.
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