
BIOINFORMATICS

Supplementary Information for:

Exploring the structure and function of temporal
networks with dynamic graphlets
Hulovatyy, Y., Chen, H., and Milenković T.∗

Department of Computer Science and Engineering, Interdisciplinary Center for Network Science
and Applications, and ECK Institute for Global Health, University of Notre Dame, IN 46556, USA

S1 COMPUTING THE NUMBER OF DYNAMIC GRAPHLET TYPES OF A GIVEN SIZE
Here, we expand the discussion from the main paper on how to compute D(n, k), the number of dynamic graphlet types with n nodes and k
events.

Since at least n − 1 edges are needed to connect n nodes, D(n, k) = 0 for k < n − 1. Moreover, since our events are undirected,
D(2, k) = 1, for any k. To compute D(n, k) when n ≥ 3 and k ≥ n − 1, notice that each dynamic graphlet with k events can be formed
from a dynamic graphlet with k− 1 events and either n− 1 or n nodes, by adding a new event between some two existing nodes or between
an existing node and a new node, respectively.

In the first case, we take a dynamic graphlet with n nodes and k − 1 events and add a new event between its existing nodes, in order to
obtain a dynamic graphlet with n nodes and k events (e.g., construct D6 from D2). Due to the ∆t-connectivity constraint, this new event has
to involve at least one of the two nodes participating in event (k − 1). We can add the new event in 2n − 3 different ways: between one of
these nodes and the “remaining” n− 2 nodes (which is 2(n− 2) = 2n− 4 ways) or just duplicate event (k − 1).

In the second case, we take a dynamic graphlet with n− 1 nodes and k− 1 events and add an event from one of its nodes to the new (nth)
node, in order to obtain a dynamic graphlet with n nodes and k events (e.g., construct D4 from D1). For n− 1 ≥ 3, there are two ways to do
this, since there are two potential candidates for this new event (the two endpoints of event (k − 1)). Note that since events are undirected,
for n− 1 = 2, the two nodes are indistinguishable from our point of view, and so we have only one way to construct a new dynamic graphlet
with 3 nodes and k events.

In summary, we can get 2n − 3 new dynamic graphlets with n nodes and k events from each dynamic graphlet with n nodes and k − 1
events. Moreover, we can get two new dynamic graphlets with n nodes and k events from each dynamic graphlet with n− 1 nodes and k− 1
events. The only exception is for n = 3, since we can get only one new dynamic graphlet with three nodes from a dynamic graphlet with two
nodes, as these two nodes are indistinguishable. Importantly, since each dynamic graphlet with k events has a unique (k − 1)-“prefix” from
which it was extended, all of these new dynamic graphlets with n nodes will be different. Thus, we get the following recursive formulas for
D(n, k): D(3, k) = 3D(3, k− 1) +D(2, k− 1), n = 3; and D(n, k) = (2n− 3)D(n, k− 1) + 2D(n− 1, k− 1), n > 3. By expanding
the formulas for few smallest values of n and k, we get the following closed-form solution (Supplementary Table S2):

D(n, k) =

n−2∑
i=0

(−1)n+i
(
n−2
i

)
(2i+ 1)k−1

2(n− 2)!
, n ≥ 3.

S2 CONSTRAINED COUNTING OF DYNAMIC GRAPHLETS IN A NETWORK
Here, we expand the discussion from the main paper on the constrained dynamic graphlet counting procedure.

A network having dense neighborhoods with many events between the same nodes will have large counts of dynamic graphlet types. This
is because for a given dynamic graphlet instance, there will be many ∆t-adjacent candidate events which can be used to “grow” this graphlet.
For each of these possible graphlet extensions, we will again have many possibilities for further extension, and so on. For example, consider a
snapshot-based network representation where each snapshot is the same dense graph. A large number of different dynamic graphlet instances
will be detected, yet many of them will just be artifacts of the consecutive snapshots “sharing” the dense network structure. As an (rather
extreme) example, consider all snapshots being the same fully connected graph. In this case, for a dynamic graphlet instances ending with
some event, we will have multiple events that can be used to grow this graphlet, resulting in large counts for all possible dynamic graphlet

∗To whom correspondence should be addressed

c⃝ Oxford University Press 2015. 1

Hulovatyy et al.

types. Clearly, considering all of these possible extensions will be computationally expensive; moreover, not all of the detected dynamic
graphlet instances will have meaningful interpretations.

To address this and remove the likely redundant graphlet counts, which is expected to reduce computational complexity of dynamic
graphlet counting, we propose a modification to the counting process, as follows. When we are extending a dynamic graphlet ending with
event e1 = (u1, v1, t1, σ1) with a new event e2 = (u2, v2, t2, σ2), if {u1, v1} = {u2, v2}, i.e., if the two events correspond to the same
static edge, then we impose the same two conditions as in the regular counting procedure from Section 2.2 in the main paper: 1) the two
events e1 and e2 must be ∆t-adjacent with t2 > t1, and 2) the two events must share a node. Otherwise, if {u1, v1} ̸= {u2, v2}, i.e., if the
two events correspond to two different static edges, we also add a new third condition: to extend the dynamic graphlet ending with event e1
with event e2, u2 and v2 cannot interact between the starting times of e1 and e2 (i.e., ̸ ∃e′ = (u2, v2, t

′, σ′) ∈ E with t1 − σ′ ≤ t′ < t2).
Intuitively, the new third condition requires a “causal” relationship between e1 and e2: u2 and v2 start their interaction only after the end of

e1 (note that there could still be an event involving u2 and v2 sometime before the start of e1). That is, in order to extend a dynamic graphlet
ending with event e1 with some event e2, the two nodes participating in e2 should not interact with each other between the start of e1 and the
start of e2, unless e1 and e2 involve the same nodes (otherwise, the counting process is as in the regular dynamic graphlet procedure). This
reduces the number of likely redundant temporal subgraphs that are being considered, which in turn reduces the running time.

We split the counting procedure into the two cases (e1 and e2 being the same static edge vs. different static edges) as we want to impose
the new third condition only in the latter case. This is because in the former case we still want to count dynamic graphlet types having
consecutive repetitions of the same event, e.g., D1 or D4. And if we imposed the third condition in the former case as well, such a dynamic
graphlet type would never be counted.

We refer to this modified counting procedure as constrained dynamic graphlet counting. Note that the only difference in case of constrained
dynamic graphlet counting compared to the original counting procedure is which candidate events are chosen to extend a given dynamic
graphlet (as determined by procedure GetNextEvents in Supplementary Algorithm S3). In the main paper, we illustrate the distinction between
regular and constrained dynamic graphlet counting procedures. Clearly, constrained dynamic graphlet counting allows for examining fewer
instances of a given dynamic graphlet type compared to regular dynamic graphlet counting, because the former excludes from consideration
graphlet instances that are likely artifacts of repeated events, unlike the latter. As a consequence, constrained dynamic graphlet counting is
expected to be more computationally efficient in terms of running time.

S3 EXPERIMENTAL SETUP
Graphlet methods under consideration and network construction. When generating an aggregate or snapshot-based representation of the
given temporal network, we began our analysis by testing in detail w values of 1, 2, 3, 5, and 10 on one of our data sets. Since we observed no
qualitative differences in results produced by the different choices of this parameter, we continued with the choice of w = 1, and we report
the corresponding results throughout the main paper. We also tested multiple values for tw in each data set, and again we saw no significant
qualitative differences in the results. Hence, unless noted otherwise, throughout the paper, we report results for tw = 2 (the unit of time for
this parameter depends on the data set).

Network classification. The first network evolution model that we use in the context of this analysis was designed to simulate evolution of
real-world (social) networks, and it incorporates the following parameters: node arrival rate, initiation of an edge by a node, and selection
of edge destination. Specifically, the model is parameterized by the node arrival function N(t) that corresponds to the number of nodes in
the network at a given time, parameter λ that controls the lifetime of a node, and parameters α and β that control how active the nodes are
in adding new edges. By choosing different options for the model parameters, we can generate networks with different evolution processes.
In particular, for our analysis, we test three different types of the node arrival function (linear, quadratic, and exponential) and two sets of
parameters corresponding to edge initiation (λ1 = 0.032, α1 = 0.8, β1 = 0.002, and λ2 = 0.02, α2 = 0.9, β2 = 0.004), resulting
in six different network classes. We also test a modification of the network evolution model, in which each node upon arrival simply adds
a fixed number of edges (in our case, 20) according to preferential attachment and then stops. Intuitively, this modification corresponds to
preferential attachment model extended with a node arrival function. In this way, we create three additional network classes, one for each of
the three node arrival functions, resulting in nine different network classes in total.

In addition to the above network model originating from social network domain, we perform an equivalent analysis using biological
network models. Specifically, we use the following models: geometric gene duplication model with probability cutoff (GEO-GD) and scale-
free gene duplication model (SF-GD). GEO-GD starts with a small initial seed network and then iteratively adds new nodes by choosing as
the parent an existing node uniformly at random, and by placing a child node with probability p at a randomly chosen distance of at most ϵ
from the parent and with probability 1− p at a randomly chosen distance of at most 10ϵ from the parent. Here, ϵ is the same parameter as in
the definition of a geometric random graph. Similarly, SF-GD also starts from an initial seed network and then grows it by adding new nodes
while relying on principles of gene duplication and mutation. This model has two parameters, p and q, corresponding to the probability of the
child node keeping interaction with the parent and the probability of the child node forming new connections, respectively. We distinguish
between four variations of these two models: GEO-GD with p = 0.3, GEO-GD with p = 0.7, SF-GD with p = 0.3 and q = 0.7, and SF-GD
with p = 0.7 and q = 0.6, as these parameter combinations accurately mimic real-world networks. In order to grow the GEO-GD and SF-
GD model networks non-uniformly, as in the case with the above social network model, we add a node arrival function on top of GEO-GD
and SF-GD. Specifically, we use linear node arrival function for GEO-GD and exponential node arrival function for SF-GD. Note that we
intentionally use different node arrival functions for the different biological network models, just as we did with the different classes of the

2

Dynamic graphlets

social network model. As with the social network model, we form snapshot-based network representations, test various network sizes (from
1000 to 3000 nodes), and construct 25 networks for each class (Section 2.3 in the main paper). Note that here, when we use snapshot-based
representation, we report results for tw = 5. We then evaluate graphlet-based methods in the same way as for social network models. To
account for at least 90% of variance, here we also need to keep only the first two PCA components.

Node classification. For the network used in this analysis, we report results for the following network construction parameters: w = 1 and
tw = 2 months. Note that we tested other parameter values as well (w = 2, 3, 5, 10; tw = 1 week, tw = 2 weeks, tw = 1 month, and
tw = 3 months), and all results were qualitatively similar.

Evaluation strategy. Here, we expand our discussion from the main paper on how we measure the PCA performance of a given graphlet
approach.

First, we take all possible pairs of objects and retrieve them in the order of increasing distance, starting from the closest ones. We retrieve
the object pairs in increments of k% (including ties), where we vary k from 0% to 100% in increments of 0.01% until we retrieve top 1% of
all pairs and in increments of 1% afterwards. If we retrieve a pair with two objects of the same ground truth class, the pair is a true positive,
otherwise the pair is a false positive. At a given step, for all pairs that we do not retrieve, the given pair is either a true negative (if it contains
objects of different classes) or a false negative (if it contain objects of the same class). Then, at each value of k, we compute precision, the
fraction of correctly retrieved pairs out of all retrieved pairs, and recall, the fraction of correctly retrieved pairs out of all correct pairs. We
find the value of k where precision and recall are equal, and we refer to the resulting precision and recall value as the break-even point.
Since lower precision means higher recall, and vice versa, we summarize the two measures into F-score, their harmonic mean, and we report
the maximum F-score over all values of k. To summarize these results over the whole range of k, we measure average method accuracy by
computing the area under the precision-recall curve (AUPR). Moreover, we compute an alternative classification accuracy measure, namely
the area under the receiver operator characteristic curve (AUROC), which corresponds to the probability of a method ranking a randomly
chosen positive pair higher than a randomly chosen negative pair (and so the AUROC value of 0.5 corresponds to a random result). AUPRs
are considered to be more credible than AUROCs when there exists imbalance between the size of the set of object pairs that share a class
and the size of the set of object pairs that do not share a class.

Second, we split all pairs of objects (i.e., their graphlet-based PCA distances) into two classes: correct pairs (each containing two objects
of the same class) and incorrect pairs (each containing two objects of two different classes). Then, we compare distances between correct
and incorrect pairs, expecting that distances of the correct pairs would be statistically significantly lower than distances of the incorrect pairs.
Here, we compare two sets of distances via Wilcoxon rank-sum test.

Finally, for each of the above evaluation tests, we evaluate all graphlet methods against a random approach. First, as a simple random
approach (which favors the graphlet methods the most), we randomly embed objects into Euclidean space, compute the objects’ pairwise
Euclidean distances, and evaluate the resulting random approach in the same way as above. Second, as a more restrictive random approach
(which favors the graphlet methods the least), for each graphlet method, we keep its actual PCA distances between objects, and we just
randomly permute the object classes/labels before we evaluate the results. For each randomization approach, we compute its results as an
average over 10 different runs. We report as “random” approach’s results the highest-scoring values over all of the randomization schemes,
to gain as much confidence as possible into the graphlet approaches’ results.

S4 EFFECT OF GRAPHLET SIZE ON RESULTS
Number of graphlet nodes. We test the effect of graphlet size in terms of the number of nodes on the result quality, for all graphlet methods.
For network classification, increasing the number of graphlet nodes surprisingly leads to inferior accuracy, for all graphlet methods (Supple-
mentary Table S3). On the other hand, in node classification, for static and static-temporal graphlets, accuracy is similar for all graphlet sizes,
with 4-node graphlets showing marginal superiority, while for dynamic and constrained dynamic graphlets, larger number of nodes improves
accuracy (Supplementary Table S5). In terms of the running time, as expected, larger number of nodes increases computational complexity
in all cases.

Note that with node classification, unlike with network classification, the best parameter version of constrained dynamic graphlet counting
is more accurate than the best parameter version of regular dynamic graphlet counting. We note, however, that due to the differences in the
counting process, constrained dynamic graphlet counting allows us to consider larger graphlet sizes (e.g., six or seven nodes) that are not
attainable when using regular dynamic graphlet counting due to computational constraints (Supplementary Table S5). And it is at these large
graphlet sizes of six or seven nodes where constrained dynamic graphlet counting perform the best. So, in order to evaluate which one is
more accurate, regular or constrained dynamic graphlet counting, it might not be fair to compare the two methods’ best parameter versions,
due to differences in the considered graphlet sizes. Nonetheless, even if we compare regular or constrained dynamic graphlet counting with
the same parameters, we find that constrained dynamic graphlet counting still demonstrates better results (Supplementary Table S5).

Number of graphlet events. Also, we test the effect of graphlet size in terms of the number of events on the result quality, for dynamic and
constrained dynamic graphlets (static and static-temporal graphlets do not deal with events, i.e., temporal edges). For network classification,
the number of events does not affect the accuracy (Supplementary Table S3). On the other hand, in node classification, for a fixed number
of nodes, the increase in the number of events marginally increases accuracy for dynamic graphlets but decreases accuracy for constrained
dynamic graphlets (Supplementary Table S5). In terms of the running time, larger number of events increases computational complexity,
although the level of running time increase is less pronounced than when increasing the number of nodes.

3

Hulovatyy et al.

A possible explanation why increasing graphlet size does not always improve accuracy. Here, we provide a possible explanation behind
our observation that increasing graphlet size sometimes leads to decrease in result accuracy in the task of network classification but not in
the task of node classification. Namely, in network classification, we use synthetic networks generated from a random graph model, while
in node classification we use real-world networks. A random graph model might not be able to produce large and dense graphlet structures.
Now, given two synthetic networks of different classes, whereas their comparison via smaller graphlets only could correctly identify the
networks as dissimilar, their comparison via larger graphlets (with zero counts) as well could mistakenly identify the networks as similar.
This is because there are many more larger than smaller graphlets, and thus, the many zero counts for the larger graphlets would match
between the networks, wrongly indicating their similarity. However, note that our PCA framework, which reduces graphlet count vectors to
a lower dimension (Section 2.3 in the main paper), should remove the effect of zero graphlet counts, because it should be preserving only the
most relevant graphlet-based information about the network of interest.

An alternative reason why increasing graphlet size (and the number of graphlet nodes in particular) would lead to decrease in performance
is as follows. Some graphlet types, such as a claw (e.g., G1 or G4 in Fig. 1 in the main paper), typically result in an order of magnitude larger
counts than other graphlet types, simply because of presence of high-degree (hub) nodes in real-world networks or any scale-free (model)
networks. This difference in the magnitude of counts for such highly frequent graphlet types compared to counts of less frequent graphlet
types becomes more pronounced as the graphlet size increases. And such extremely dominating graphlet counts could potentially confuse
our PCA framework and mistakenly identify the highly frequent graphlet types as more relevant than the less frequent graphlet types. For
this reason, one could “rescale” all graphlet counts to get them to the same (or similar) order of magnitude, by, e.g., taking a logarithm of
each count.1

Clearly, determining why increase in graphlet size does not necessarily improve the accuracy of results requires further theoretical and
empirical analyses, and this is subject of future work.

1 Pržulj, N., Corneil, D. G. and Jurisica, I. (2004) Modeling interactome: scale-free or geometric? Bioinformatics, 20, 3508-3515.

4

Dynamic graphlets

Supplementary Algorithm S1 Enumerate all dynamic graphlet types with up to nmax nodes and kmax events
1: procedure ENUMERATE(nmax,kmax)
2: k ← 2
3: i← 1
4: G0 ←‘12’
5: Graphlets[1]← {G0} ◃ set of dynamic graphlets with a given number of events
6: while k ≤ kmax do
7: Graphlets[k]← ∅
8: for all G ∈ Graphlets[k − 1] do
9: if |V (G)| ≤ nmax then

10: s← G[2k − 4] ◃ recall that G contains 2k − 2 numbers
11: t← G[2k − 3]
12: u← max(G) + 1 ◃ u is the “new node”
13: if |V (G)| = 2 then ◃ V (G) is just the set of different numbers in G
14: if |V (G)| < nmax then
15: Gi ← G+ [s, t]
16: Graphlets[k]← Graphlets[k] ∪ {Gi}
17: i← i+ 1
18: end if
19: Gi ← G+ [t, u]
20: Graphlets[k]← Graphlets[k] ∪ {Gi}
21: i← i+ 1
22: else
23: for all v ∈ V (G)− {s} do
24: Gi ← G+ [min(s, v),max(s, v)] ◃ for consistency, keep each event in increasing order
25: Graphlets[k]← Graphlets[k] ∪Gi

26: i← i+ 1
27: end for
28: for all v ∈ V (G)− {s, t} do
29: Gi ← G+ [min(t, v),max(t, v)]
30: Graphlets[k]← Graphlets[k] ∪Gi

31: i← i+ 1
32: end for
33: if |V (G)| < nmax then
34: Gi ← G+ [s, u]
35: Gi+1 ← G+ [t, u]
36: Graphlets[k]← Graphlets[k] ∪ {Gi, Gi+1}
37: i← i+ 2
38: end if
39: end if
40: end if
41: end for
42: k ← k + 1
43: end while
44: end procedure

Supplementary Algorithm S2 Count in the input network the frequency of each of dynamic graphlets with up to nmax nodes and kmax

events
1: procedure GRAPHLETCOUNT(G,nmax, kmax,∆t)
2: Counts← dict()
3: NCounts← dict()
4: for all e ∈ G.Events() do GRAPHLETCOUNTFROMPREFIX(G, [e], Counts,NCounts, nmax, kmax,∆t)
5: end for
6: end procedure

5

Hulovatyy et al.

Supplementary Algorithm S3 Count dynamic graphlets with up to nmax nodes and kmax events starting from a given prefix
1: procedure GRAPHLETCOUNTFROMPREFIX(G, prefixG,Counts,NCounts, nmax, kmax,∆t)
2: prefEncoding, prefNodeCodes← ENCODEGRAPHLET(prefixG)
3: Counts[prefixEncoding]← Counts[prefixEncoding] + 1
4: prefNodes← prefNodeCodes.keys()
5: for all v ∈ prefNodes do
6: if |prefNodes| = 2 then
7: nodeCode←‘1’
8: else
9: nodeCode← prefNodeCodes[v]

10: end if
11: NCounts[v][prefixEncoding+‘ ’+nodeCode]← NCounts[v][prefixEncoding+‘ ’+nodeCode] + 1
12: end for
13: if |prefixG| < kmax then
14: for all e ∈ GETNEXTEVENTS(G, prefixG[|prefixG| − 1],∆t) do ◃ GetNextEvents returns all events that share a node with

a given event and occur within ∆t after it
15: if |prefNodes| < nmax or e.EndPoints() ⊆ prefNodes then

GRAPHLETCOUNTFROMPREFIX(G, prefixG+ [e], Counts,NCounts, nmax, kmax,∆t)
16: end if
17: end for
18: end if
19: end procedure

Supplementary Algorithm S4 Encode a dynamic graphlet
1: procedure ENCODEGRAPHLET(Graphlet)
2: encoding ←‘’
3: nodeCodes← dict()
4: i← 1
5: for all e ∈ Graphlet do
6: u, v ← e.EndPoints()
7: updated← False
8: if !nodeCodes.hasKey(u) then
9: nodeCodes[u]← i

10: i← i+ 1
11: updated← True
12: end if
13: if !nodeCodes.hasKey(v) then
14: nodeCodes[v]← i
15: i← i+ 1
16: updated← True
17: end if
18: if i = 4 and updated = True then◃ for consistency, replace ‘121212 . . . 1213’ with ‘121212 . . . 1223’ - need to swap codes of

‘1’ and ‘2’
19: if (nodeCodes[u] = 1 and nodeCodes[v] = 3) or (nodeCodes[u] = 3 and nodeCodes[v] = 1) then
20: nodeCodes[nodeCodes.GetKey(1)]← 2
21: nodeCodes[nodeCodes.GetKey(2)]← 1
22: end if
23: end if
24: encoding ← encoding +min(nodeCodes[u], nodeCodes[v]) + max(nodeCodes[u], nodeCodes[v])
25: end for

return encoding, nodeCodes
26: end procedure

6

Dynamic graphlets

1 2 3 4 5 6 7 8 9 10

G0 1 1 1 1 1 1 1 1 1 1
G1 0 1 3 7 15 31 63 127 255 511
G2 0 0 1 6 25 90 301 966 3,025 9,330
G3 0 0 1 5 18 56 161 441 1,170 3,036
G4 0 0 1 6 25 90 301 966 3,025 9,330
G5 0 0 0 1 7 34 140 525 1,855 6,294
G6 0 0 0 6 54 320 1,576 7,006 29,238 117,048
G7 0 0 0 0 12 150 1,190 7,658 43,690 230,760
G8 0 0 0 0 0 10 174 1,842 15,398 111,972
G9 0 0 0 1 6 26 97 332 1,074 3,339
G10 0 0 0 2 17 94 429 1,758 6,735 24,668
G11 0 0 0 1 10 65 350 1,701 7,770 34,105
G12 0 0 0 0 10 121 926 5,731 31,359 158,475
G13 0 0 0 0 4 42 286 1,598 7,968 36,928
G14 0 0 0 0 9 120 1,001 6,716 39,747 217,106
G15 0 0 0 0 1 8 43 193 781 2,955
G16 0 0 0 0 7 70 456 2,440 11,649 51,648
G17 0 0 0 0 0 62 1,037 10,640 86,462 611,904
G18 0 0 0 0 0 7 109 1,055 8,148 55,084
G19 0 0 0 0 0 34 532 5,104 38,846 257,884
G20 0 0 0 0 0 5 68 573 3,852 22,660
G21 0 0 0 0 0 26 354 3,010 20,522 122,906
G22 0 0 0 0 0 0 50 1,063 13,549 134,524
G23 0 0 0 0 0 0 90 1,954 25,198 251,952
G24 0 0 0 0 0 0 183 3,676 44,367 418,109
G25 0 0 0 0 0 0 69 1,287 14,382 125,419
G26 0 0 0 0 0 0 0 594 15,442 235,160
G27 0 0 0 0 0 0 0 219 5,400 77,959
G28 0 0 0 0 0 0 0 0 1,133 35,859
G29 0 0 0 0 0 0 0 0 0 796

Table S1. The number of dynamic graphlets with a given number of events (columns) that have as their backbone the same static graphlet (rows), for all static
graphlets with up to five nodes.

1 2 3 4 5 6 7 8 9 10

2 1 1 1 1 1 1 1 1 1 1
3 0 1 4 13 40 121 364 1,093 3,280 9,841
4 0 0 2 18 116 660 3,542 18,438 94,376 478,440
5 0 0 0 4 64 680 6,080 49,644 384,384 2,879,440
6 0 0 0 0 8 200 3,160 40,600 464,688 4,950,960
7 0 0 0 0 0 16 576 12,656 220,416 3,353,952
8 0 0 0 0 0 0 32 1,568 45,696 1,034,880
9 0 0 0 0 0 0 0 64 4,096 152,832
10 0 0 0 0 0 0 0 0 128 10,368
11 0 0 0 0 0 0 0 0 0 256

1 2 7 36 229 1,678 13,755 124,064 1,217,065 12,870,970
Table S2. The number of dynamic graphlet types with up to ten nodes (rows) and ten events (columns). The last row shows cumulative results over all the
preceding rows.

7

Hulovatyy et al.

Method AUPR AUROC Break-even point Maximum F-score Running time, s

Static, 3-node 0.507 0.935 0.508 0.613 3.3 (1.785)
Static, 4-node 0.423 0.882 0.463 0.468 3.3 (1.785)
Static, 5-node 0.321 0.807 0.341 0.376 3.3 (1.785)
Static-temporal, 3-node 0.784 0.947 0.702 0.707 3.7 (0.173)
Static-temporal, 4-node 0.498 0.826 0.475 0.476 3.7 (0.173)
Static-temporal, 5-node 0.374 0.790 0.379 0.390 3.7 (0.173)
Dynamic, 3-event, 3-node 0.960 0.994 0.884 0.885 0.6 (0.116)
Dynamic, 5-event, 3-node 0.960 0.994 0.884 0.885 0.7 (0.104)
Dynamic, 7-event, 3-node 0.960 0.994 0.884 0.885 1.4 (0.149)
Dynamic, 6-event, 4-node 0.714 0.937 0.656 0.660 4.8 (0.875)
Constrained dynamic, 3-event, 3-node 0.949 0.993 0.881 0.881 0.6 (0.188)
Constrained dynamic, 5-event, 3-node 0.949 0.993 0.881 0.881 0.7 (0.145)
Constrained dynamic, 7-event, 3-node 0.949 0.993 0.881 0.881 1.5 (0.206)
Constrained dynamic, 6-event, 4-node 0.740 0.939 0.672 0.675 4.2 (0.684)
Random 0.107 (0.002) 0.499 (0.005) 0.108 (0.006) 0.194 (0.000) -

Table S3. Detailed network classification results for the different methods and different parameters in each method. Different columns correspond to different
performance measures. In a given column, the value in bold corresponds to the best result over all methods. Numbers in parentheses correspond to standard
deviations. For illustration purposes, graphlet counting running times are shown for one of the nine network classes (using the exponential node addition
function and the first set of edge initiation parameters (Supplementary Section S3)); running times for the remaining network classes are shown in Supple-
mentary Table S4. Note that for static and static-temporal graphlets, running times for 3- and 4-node graphlets are the same as for 5-node graphlets simply
because their implementations compute graphlet counts for all up to 5-node graphlets by default and then they compute graphlet counts for smaller graphlet
sizes simply by removing counts corresponding to the larger graphlet sizes.

Linear Quadratic Exponential
Method Type 1 Type 2 PA Type 1 Type 2 PA Type 1 Type 2 PA

Static, 3-node 5.4 (2.914) 18.1 (4.957) 1316.2 (131.210) 4.0 (1.685) 10.1 (2.399) 1301.6 (131.622) 3.3 (1.785) 3.4 (1.628) 1195.2 (11.294)
Static, 4-node 5.4 (2.914) 18.1 (4.957) 1316.2 (131.210) 4.0 (1.685) 10.1 (2.399) 1301.6 (131.622) 3.3 (1.785) 3.4 (1.628) 1195.2 (11.294)
Static, 5-node 5.4 (2.914) 18.1 (4.957) 1316.2 (131.210) 4.0 (1.685) 10.1 (2.399) 1301.6 (131.622) 3.3 (1.785) 3.4 (1.628) 1195.2 (11.294)
Static-temporal, 3-node 47.7 (0.710) 49.1 (0.847) 48.5 (1.011) 23.9 (0.593) 24.2 (0.603) 24.8 (0.318) 3.7 (0.173) 3.7 (0.176) 2.8 (0.107)
Static-temporal, 4-node 47.7 (0.710) 49.1 (0.847) 48.5 (1.011) 23.9 (0.593) 24.2 (0.603) 24.8 (0.318) 3.7 (0.173) 3.7 (0.176) 2.8 (0.107)
Static-temporal, 5-node 47.7 (0.710) 49.1 (0.847) 48.5 (1.011) 23.9 (0.593) 24.2 (0.603) 24.8 (0.318) 3.7 (0.173) 3.7 (0.176) 2.8 (0.107)
Dynamic, 3-event, 3-node 0.8 (0.153) 1.2 (0.317) 2.4 (0.190) 0.6 (0.143) 0.9 (0.130) 2.9 (0.333) 0.6 (0.116) 0.8 (0.208) 8.0 (0.486)
Dynamic, 5-event, 3-node 0.9 (0.288) 1.4 (0.297) 2.5 (0.365) 0.8 (0.241) 1.1 (0.181) 2.9 (0.263) 0.7 (0.104) 0.9 (0.189) 8.0 (0.591)
Dynamic, 7-event, 3-node 1.6 (0.262) 2.2 (0.322) 3.3 (0.353) 1.6 (0.266) 1.9 (0.312) 3.9 (0.519) 1.4 (0.149) 1.7 (0.280) 8.8 (0.592)
Dynamic, 6-event, 4-node 3.4 (0.530) 4.8 (0.416) 5.9 (0.521) 3.1 (0.387) 4.2 (0.362) 8.2 (0.602) 4.8 (0.875) 7.0 (1.528) 79.7 (4.799)
Constrained dynamic, 3-event, 3-node 0.8 (0.224) 1.1 (0.207) 2.7 (0.341) 0.6 (0.127) 1.0 (0.205) 3.0 (0.470) 0.6 (0.188) 0.7 (0.154) 8.2 (0.590)
Constrained dynamic, 5-event, 3-node 0.9 (0.206) 1.3 (0.241) 2.7 (0.228) 0.7 (0.180) 1.1 (0.215) 3.0 (0.240) 0.7 (0.145) 0.9 (0.202) 8.3 (0.510)
Constrained dynamic, 7-event, 3-node 1.6 (0.205) 2.1 (0.302) 3.5 (0.372) 1.4 (0.237) 1.9 (0.360) 4.0 (0.548) 1.5 (0.206) 1.5 (0.204) 9.4 (0.793)
Constrained dynamic, 6-event, 4-node 3.3 (0.491) 4.4 (0.540) 6.1 (0.566) 3.0 (0.434) 3.8 (0.319) 8.5 (0.495) 4.2 (0.684) 5.3 (0.909) 80.6 (6.693)

Table S4. Running times of the graphlet methods for each of the nine network classes in the network classification task. The first row lists three possible node
arrival functions. The second row lists three possible edge initiation strategies. The two combined result in 3× 3 = 9 network classes.

8

Dynamic graphlets

Method AUPR AUROC Break-even point Maximum F-score Running time, s

Static, 3-node 0.464 0.600 0.456 0.562 9.4
Static, 4-node 0.469 0.610 0.461 0.567 9.4
Static, 5-node 0.464 0.604 0.462 0.566 9.4
Static-temporal, 3-node 0.499 0.644 0.508 0.571 2.7
Static-temporal, 4-node 0.503 0.643 0.609 0.689 2.7
Static-temporal, 5-node 0.482 0.570 0.486 0.554 2.7
Dynamic, 3-event, 3-node 0.479 0.622 0.477 0.569 2.7
Dynamic, 5-event, 3-node 0.474 0.615 0.458 0.569 9.6
Dynamic, 7-event, 3-node 0.470 0.609 0.460 0.572 27.5
Dynamic, 3-event, 4-node 0.541 0.684 0.547 0.594 24.5
Dynamic, 6-event, 4-node 0.525 0.666 0.516 0.583 1,024
Dynamic, 4-event, 5-node 0.591 0.726 0.615 0.620 753
Constrained dynamic, 3-event, 3-node 0.491 0.639 0.498 0.569 1.1
Constrained dynamic, 5-event, 3-node 0.492 0.638 0.495 0.570 1.9
Constrained dynamic, 7-event, 3-node 0.492 0.638 0.495 0.571 2.6
Constrained dynamic, 3-event, 4-node 0.550 0.695 0.570 0.600 4.9
Constrained dynamic, 6-event, 4-node 0.550 0.695 0.571 0.600 37.2
Constrained dynamic, 4-event, 5-node 0.594 0.732 0.618 0.637 60.8
Constrained dynamic, 5-event, 6-node 0.611 0.743 0.636 0.654 815
Constrained dynamic, 6-event, 7-node 0.608 0.742 0.635 0.652 10,029
Random 0.376 (0.009) 0.495 (0.016) 0.369 (0.007) 0.550 (0.000) -

Table S5. Detailed node classification results for the different methods and different parameters in each method. The table can be interpreted just as Supple-
mentary Table S3. Notice that in this test of node classification we could test some additional parameters (e.g., graphlets on five or more nodes) compared to
the test of network classification (Supplementary Table S3); this is because the test of network classification is computationally much more complex, given
that graphlets need to be counted in multiple networks, as opposed to counting graphlets in only one network in the node classification task.

DyNetAge BrainExpression2004Age SequenceAge
k1 k2 k1 k2 k1 k2

Static 0.981 0.981 0.947 0.947 0.990 0.990
Static-temporal 0.992 0.992 0.948 0.947 0.998 0.998
Dynamic 0.998 0.998 0.926 0.926 0.999 0.999
Constrained dynamic 0.993 0.993 0.927 0.927 0.991 0.991
Random 0.850 0.851 0.946 0.944 0.914 0.910

Table S6. Precision of the different methods in the context of aging at the two k values, for the three “ground truth” aging-related data sets (DyNetAge,
BrainExpression2004Age, and SequenceAge). For each method, the highest-scoring graphlet size is chosen. In a column, the value in bold is the best
result over all methods. Note that even though (constrained) dynamic graphlets are not superior with respect to the two values of k when it comes to
BrainExpression2004Age, as illustrated in the table, (constrained) dynamic graphlets are still superior with respect to the entire range of k, as illustrated in
Supplementary Fig. S4.

http://www.nd.edu/∼cone/DG/predictions.xlsx
Table S7. Lists of aging-related predictions produced by the four graphlet approaches at the two values of k. Note that we provide a web link to an excel file
containing the table with the predictions, as the table is too large to be directly incorporated into the Supplement. Also, note that the parameter versions of the
graphlet approaches that were used to make the predictions are not necessarily the same the parameter versions shown in Table 1 in the main paper. Namely,
the dynamic graphlet approach at k1, which had precision of 0.983 in Table 1 in the main paper, resulted in only a single novel aging-related gene, and as
such, we had no statistical power to validate this version of the dynamic graphlet approach. Thus, to produce novel aging-related predictions, we used the
next highest scoring (in terms of precision) version of the dynamic graphlet approach. Also, we note that one parameter version of static-temporal graphlets
produced the maximum precision of 1 with respect to the known aging-related knowledge from DyNetAge for the first value of k. This is interesting, as it
means that its predictions are a perfect subset of DyNetAge, despite the two approaches having significant differences: our static-temporal graphlet approach
from this study is based on ranking of node pairs and on graphlets only, whereas the DyNetAge study is based on the notion of changing node centralities and
on multiple measures of network topology. However, whereas this parameter version of the static-temporal approach resulted in the perfect precision, it has
no practical usefulness beyond predicting knowledge that is already predicted by DyNetAge; it cannot predict any novel aging-related genes. For this reason,
we left out this version from consideration in our study and instead we have focused on the next highest scoring version of the static-temporal approach, from
which we have made novel aging-related predictions.

9

Hulovatyy et al.

GO term ID GO term name

GO:0044281 Small molecule metabolic process
GO:0046854 Phosphatidylinositol phosphorylation
GO:0046677 Response to antibiotic
GO:0050885 Neuromuscular process controlling balance
GO:0071356 Cellular response to tumor necrosis factor
GO:0006661 Phosphatidylinositol biosynthetic process
GO:0001666 Response to hypoxia
GO:0007059 Chromosome segregation
GO:0048565 Digestive tract development
GO:0010043 Response to zinc ion
GO:0071320 Cellular response to cAMP
GO:0006364 rRNA processing
GO:0006805 Xenobiotic metabolic process
GO:0044237 Cellular metabolic process
GO:0044267 Cellular protein metabolic process
GO:0016337 Single organismal cell-cell adhesion
GO:0019886 Antigen processing and presentation ofi exogenous peptide antigen via MHC class II

Table S8. GO terms enriched in novel aging-related predictions of dynamic graphlets at the second value of k. GO terms that are also enriched in SequenceAge
are shown in bold. All other GO terms are enriched only in dynamic graphets’ predictions.

10

Dynamic graphlets

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

V
al

ue

AUPR

Random
Static

Static-temporal
Dynamic

Constrained dynamic

(a)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

V
al

ue

AUROC

Random
Static

Static-temporal
Dynamic

Constrained dynamic

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Random
Static

Static-temporal
Dynamic

Constrained dynamic

(c)

Supplementary Fig. S1. Comparison of the different graphlet approaches in the context of biological network classification, in terms of (a) AUPR values,
(b) AUROC values, and (c) precision-recall curves.

Supplementary Fig. S2. Pairwise similarities between the different methods and their parameter variations in the test of node classification. Similarities are
computed as Jaccard coefficients between two methods’ top 5% node pairs that are the closest in the graphlet-based PCA space. The order of the methods
in the figure directly corresponds to the method order in Supplementary Table S5 (we leave out detailed method names for visual clarity). If we zoom into
these results, not only is there a clear separation between static, static-temporal, and (constrained) dynamic graphlets in terms of which nodes they describe as
topologically similar, but also, within both dynamic and constrained dynamic graphlets, we can see two clear clusters corresponding to three-node graphlets
with different numbers of events. The latter observation suggests that the number of nodes seems to play a larger role in separating the different dynamic
graphlet methods compared to the number of events.

11

Hulovatyy et al.

 0.8
 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1

V
al

ue

AUPR

Random
Static

Static-temporal
Dynamic

Constrained dynamic

(a)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

V
al

ue

AUROC

Random
Static

Static-temporal
Dynamic

Constrained dynamic

(b)

 0.8
 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Random
Static

Static-temporal
Dynamic

Constrained dynamic

(c)

Supplementary Fig. S3. Comparison of the different graphlet approaches in the context of aging-related node classification when considering DyNetAge
“ground truth” aging-related data, in terms of (a) AUPR values, (b) AUROC values, and (c) precision-recall curves.

 0.8
 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1

V
al

ue

AUPR

Random
Static

Static-temporal
Dynamic

Constrained dynamic

(a)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

V
al

ue

AUROC

Random
Static

Static-temporal
Dynamic

Constrained dynamic

(b)

 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1

 0 0.2 0.4 0.6 0.8 1
P

re
ci

si
on

Recall

Random
Static

Static-temporal
Dynamic

Constrained dynamic

(c)

Supplementary Fig. S4. Comparison of the different graphlet approaches in the context of aging-related node classification when considering BrainExpres-
sion2004Age, a non-network “ground truth” aging-related data obtained via gene expression data analyses, in terms of (a) AUPR values, (b) AUROC values,
and (c) precision-recall curves.

 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1

V
al

ue

AUPR

Random
Static

Static-temporal
Dynamic

Constrained dynamic

(a)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

V
al

ue

AUROC

Random
Static

Static-temporal
Dynamic

Constrained dynamic

(b)

 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Random
Static

Static-temporal
Dynamic

Constrained dynamic

(c)

Supplementary Fig. S5. Comparison of the different graphlet approaches in the context of aging-related node classification when considering SequenceAge,
a non-network “ground truth” aging-related data obtained via genomic sequence analyses, in terms of (a) AUPR values, (b) AUROC values, and (c) precision-
recall curves. Note that even though (constrained) dynamic graphlets are not superior with respect to the entire range of k when it comes to SequenceAge, as
illustrated in the figure, (constrained) dynamic graphlets are still superior at the lowest k values (Section 3.4 in the main paper), as illustrated in Supplementary
Table S6.

12

Dynamic graphlets

(a) (b)

Supplementary Fig. S6. Overlap between aging-related predictions produced by the four graphlet approaches at (a) the first value of k and (b) the second
value of k. The total number of predictions in a given set is shown in parentheses under the set’s name.

13

