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Supplement Tables 
 
Table S1.  Patient clinical data of MD-derived clusters and diametric extreme patients indicated in 
Figure 4.  Columns 1 and 2 contain additional information regarding the two patient clusters identified by 
unsupervised clustering of the 2130 MD scores from deregulated pathways in at least one patient (Methods 
2.8).  Columns	
  3	
  and	
  4	
  present	
  clinically	
  relevant	
  information	
  for	
  the	
  diametric	
  extreme	
  phenotypes	
  
(TGCA	
  breast	
  cancer,	
  RNA-­‐seq,	
  Dataset	
  II,	
  Table	
  1).	
  
 

 Cluster 1 Cluster 2 Disease-free > 
4 years 

Death of Disease < 
2.5 years 

Num. of Patients 52 28 9 5 
Stage I 10 (19%) 7 (25%) 3 (33%) 0 
Stage II 22 (42%) 18 (64%) 3 (33%) 2 (40%) 
Stage III 16 (31%) 4 (14%) 3 (33%) 2 (40%) 
Stage IV 1 (2%) 0 (0%) 0 1 (20%) 
Age range 34-90 30-80 40-78 45-90 
Age median 57 46 59 80 
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Table S2. Ranked predictive pathway signatures identified using Support Vector Machine (SVM).  
Utilizing the pathway MD CRMs in a different manner, a binary classification ('good' versus 'poor' 
prognosis) model for the 80 breast cancer patients in Dataset II, Table 1 was constructed using svm in the 
e1071 R package.  20 out of 80 patients were given a ‘good’ clinical outcome, defined by disease-free 
patients surviving more than 2.5 years.  The features were the 2130 MD CRMs for pathways found 
deregulated in at least one patient.  A linear kernel was specified and leave-on-out cross-validation (CV) 
was used to tune the cost parameter.  The model with the lowest CV error rate (0.25) was retained.  57 
patients were labeled as the support vectors or in the margin.  Weights were assigned to each feature by 
multiplying the SVM model coefficients times the features from the 57 patients.  The features (pathways) 
were ranked by absolute value of the weights.  The top 20 pathways are listed below: 
GO ID Description 

0016339 calcium-dependent cell-cell adhesion 
0016254 preassembly of GPI anchor in ER membrane 
0046633 alpha-beta T cell proliferation 
0030949 positive regulation of vascular endothelial growth factor receptor signaling pathway 
0016079 synaptic vesicle exocytosis 
0001522 pseudouridine synthesis 
0046640 regulation of alpha-beta T cell proliferation 
0050853 B cell receptor signaling pathway 
0021696 cerebellar cortex morphogenesis 
0055117 regulation of cardiac muscle contraction 
0001782 B cell homeostasis 
0007617 mating behavior 
0032786 positive regulation of DNA-dependent transcription, elongation 
0061437 renal system vasculature development 
0061440 kidney vasculature development 
0000722 telomere maintenance via recombination 
0045909 positive regulation of vasodilation 
0042255 ribosome assembly 
0072012 glomerulus vasculature development 
0000413 protein peptidyl-prolyl isomerization 
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Supplement Figures 

 
Figure S1.  Tumor gene expression predicts survival in breast cancer patients.  Gene expression 
measured from the tumoral samples in (TCGA,	
   RNA-­‐seq,	
  Table	
   1	
   Dataset	
   II) was analyzed to form a 
comparison to N-of-1-pathways Mahalanobis Distance (MD) results.  (A) Two patient clusters were found 
using the log!(𝑔𝑒𝑛𝑒  𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 + 1) values via PAM clustering in the cluster R package (Methods 2.8). 
These two clusters produce distinct Kaplan-Meier curves (log-rank p-value < 0.01).  Additionally, none of 
the 1st five principal components of gene expression from the tumor samples separated the diametric 
extreme phenotypes. 
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Supplement Figure S2. MD and Wilcoxon methods exhibit bias towards finding larger genesets 
deregulated, but not towards higher intensity or longer genes.  We examined the relationship between 
identifying a geneset deregulated and the typical gene intensity, gene length, and number of genes within 
the 3243 GO-BP terms studied.  For each quantity of interest, we computed a reference distribution, “All 
Pathways.”  This is the distribution of the values for all pathways regardless of deregulation status.  (A) 
Gene length analysis.  We computed gene lengths using the UCSC Genome Browser (vers. hg19) by 
subtracting the end position from the start position.  Then we summarized the gene length by finding the 
median of the log2 gene lengths within the pathway.  Using Dataset II (Table 1), the distributions of log2 
median gene lengths of the deregulated pathways identified by both methods were found.  Both methods 
are slightly more peaked and less variable than the reference distribution.  There is not a bias towards 
longer genes as reported for some geneset tests (Young, et al., 2010). (B) Gene intensity analysis. A 
measure of pathway gene intensity was assigned to each GO-BP term by first averaging the gene 
expression from the 80 tumor samples in Dataset II, Table 1.  Then find the median average gene 
expression to summarize the pathway gene intensity.  Again we see that there is a tendency towards central 
intensity values in the pathways identified as deregulated in Dataset II, but do not observe a bias towards 
higher intensity as reported in other geneset methodology (Young, et al., 2010). (C, D) Pathway size 
analysis.  The reference distribution is all GO-BP terms with 15 to 500 genes.  Panel C depicts the 
comparison between pathways found deregulated in the TCGA breast cancer patients, Dataset I.  We see 
that there is a tendency to identify larger pathways deregulated.  To ensure that this is an artifact of the 
methodology and not reflecting true biology, we employed technical replicates of breast cancer samples 
captured by microarray, (MAQC-­‐II,	
   GEO:	
   GSE20194,Shi,	
   et	
   al.,	
   2010).	
   	
   We treat pairs of technical 
replicates as “normal” and “tumor” samples.  Any identified pathways would then be considered a false 
positive.  Indeed, we find the distribution of identified pathways in technical replicates is biased towards 
larger genesets. Legend: “All pathways” = reference distribution. 
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Supplement Figure S3.  Top ten scoring pathways predict breast cancer survival.  (A) The ten 
deregulated pathways found from the 80 breast cancer patients in Dataset II (Table 1) with highest 
absolute MD scores were used to produce PAM clusters based on the MD scores.  Restricting to only ten 
pathways maintains accurate survival prediction (log-rank p-value < 0.01). (B) Similarly, the top ten 
Wilcoxon-ranked pathway scores produced clusters with distinct survival curves. Panels C and D display 
the top ranked scoring pathways for MD and Wilcoxon approaches, respectively.  
 
  

0 20 40 60 80 100 120 140

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Clusters derived from 

MD Top Ten Scoring Pathways

Follow−up Months

R
ec

ur
re

nc
e−

fre
e 

Su
rv

iv
a

l 
(%

)

p−value < 0.01

0 20 40 60 80 100 120 140

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Follow−up Months

R
ec

ur
re

nc
e−

fre
e 

Su
rv

iv
a

l 
(%

)

Cluster1,n=22

Cluster2,n=58

p−value < 0.01

Cluster1,n=32

Cluster2,n=48

A B
Clusters derived from 

Wilcoxon Top Ten Scoring Pathways

C D
GO ID Description

0008608 attachment of spindle microtubules to kinetochore

0006336 DNA replication-independent nucleosome assembly

0034080 CENP-A containing nucleosome assembly at centromere

0034724 DNA replication-independent nucleosome organization

0051313 attachment of spindle microtubules to chromosome

0034394 protein localization to cell surface

0055117 regulation of cardiac muscle contraction

0031055 chromatin remodeling at centromere

0051310 metaphase plate congression

0050000 chromosome localization

GO ID Description

0000087 M phase of mitotic cell cycle

0048285 organelle fission
0000280 nuclear division

0007067 mitosis

0000279 M phase

0044057 regulation of system process

0000236 mitotic prometaphase

0001944 vasculature development

0000075 cell cycle checkpoint

0003012 muscle system process
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Supplement Figure S4.  N-of-1-pathways MD GO-BP clinical importance metrics (CRMs) predict 
breast cancer patient survival.  N-of-1-pathways MD was applied to n=80 invasive breast carcinoma 
patients (TCGA_BRCA, RNA-seq, Table 1 dataset II) resulting in 3225 clinical importance metrics.  We 
present the first principal component for the 1344 MD CRMs corresponding to pathways found deregulated 
in at least one of the 14 diametric extreme phenotypes of: (i) death of disease in less than 2.5 years (n=5) 
and (ii) disease-free survival for more than four years (n=9).  The boxplots display a trend for higher PC1 
for the worst phenotype, but the outliers in each group muddle the association (Wilcoxon p-value > 0.02). 
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