Expanded View Figures

Comparison of mouse and Nematostella complexin sequences

mCpx1	MEF <mark>VMKQAL</mark> GGATKD <mark>M</mark> GKML <mark>G</mark> GDEEKDPDAAKK <mark>E</mark> EER-QEALRQAEE <mark>ER</mark> KAKYAKME <mark>AER</mark> EVM <mark>R</mark> QG <mark>IRDKYGI</mark>	72
mCpx2	MDFVMKQALGGATKDMGKMLGGEEEKDPDAQKKEEER-QEALRQQEEERKAKHARMEAEREKVRQQIRDKYGL	72
mCpx3	MAFMVKSMVGGQLKNLTGSLGGGEDKGDGDKS-AAEAQGMSREEYEEYQKQLVEEKMERDAQFTQRKAERATLRSHFRDKYRL	82
mCpx4	MAFFVKNMI SNQVKNLGFGGGSEEKKEEGGTSDPAAAKGMTREEYEEYQKQMIEEKMERDAAFTQKKAERACLRVHLRDKYRL	83
nvCpx1	MNPLTKALVTNKLSS <mark>V</mark> TKSIGLDDKDETTSEDAGVSSKEMRKMREKEEAERAKREEMYAKRNADREKKREQMRAKYGI	77
nvCpx2	MASFAAKYLVSSATGKVQSTVGEFTRDSSNDGFKKEELEKAEQQLQKDEQERKKKFAKLEAKRSKHREKLINKYGL	74
mCpx-1	K <mark>K</mark> KEER <mark>E</mark> AEAQVAMEANSEGSLTRPKKAIPPGCGDEP <mark>EEE</mark> DESILDTVIKYLPGPLQDMF <mark>K</mark> K*	134
mCpx-1 mCpx-2	K <mark>K</mark> KEER <mark>E</mark> AEAQVAMEANSEGSLTRPKKAIPPGCGDEP <mark>EEE</mark> DESILDTVIKYLPGPLQDMF <mark>K</mark> K* K <mark>K</mark> KEEK <mark>E</mark> AEEKAALEQPCEGSLTRPKKAIPAGCGDEE <mark>EEE</mark> EESILDTVLKYLPGPLQDMF <mark>K</mark> K*	134 134
mCpx-1 mCpx-2 mCpx-3	K <mark>K</mark> KEER <mark>E</mark> AEAQVAMEANSEGSLTRPKKAIPPGCGDEP <mark>EEE</mark> DESILDTVIKYLPGPLQDMF <mark>K</mark> K* KKKEEKEAEEKAALEQPCEGSLTRPKKAIPAGCGDEE <mark>EEE</mark> EESILDTVLKYLPGPLQDMFKK* P <mark>K</mark> NETD <mark>E</mark> SQIQLAGGDVELPRELAKMIEEDT-EE <mark>EED</mark> KASVLGQ-LASLPGLDLSSL <mark>K</mark> DKAQTTLGDLKQSAE-K <mark>E</mark> HIM*	134 134 158
mCpx-1 mCpx-2 mCpx-3 mCpx-4	K <mark>K</mark> KEER <mark>E</mark> AEAQVAMEANSEGSLTRPKKAIPPGCGDEP <mark>EEE</mark> DESILDTVIKYLPGPLQDMF <mark>K</mark> K* KKKEEKEAEEKAALEQPCEGSLTRPKKAIPAGCGDEEEEEEESILDTVLKYLPGPLQDMFKK* PKNETDESQIQLAGGDVELPRELAKMIEEDT-EEEEDKASVLGQ-LASLPGLDLSSLKDKAQTTLGDLKQSAE-KCHIM* PKSEMDETQIQLAGDDVDLPEDLRKMVDEDQ-DEEEEKDSILGQ-LQNLQNMDLDTIKEKAQATFTEIKQSAEQKOSVM*	134 134 158 159
mCpx-1 mCpx-2 mCpx-3 mCpx-4 nvCpx1	K <mark>KKEEREAEAQVAMEANSEGSLTRPKKAIPPGCGDEPEEE</mark> DESILDTVIKYLPGPLQDMF <mark>K</mark> K* KKKEEKEAEEKAALEQPCEGSLTRPKKAIPAGCGDEEEEEEESILDTVLKYLPGPLQDMFKK* PKNETDESQIQLAGGDVELPRELAKMIEEDT-EEEEDKASVLGQ-LASLPGLDLSSLKDKAQTTLGDLKQSAE-KOHIM* PKSEMDETQIQLAGDDVDLPEDLRKMVDEDQ-DEEEEKDSILGQ-LQNLQNMDLDTIKEKAQATFTEIKQSAEQKOSVM* QKDK-DGPKKSGGHKEEGSDAPTRKGSLNREKSSEEDDNKAIM*	134 134 158 159 121

Figure EV1. Alignment of mouse and Nematostella complexin sequences.

Alignment of complexin sequences from mouse (mCpx1–4) and *Nematostella vectoriensis* (nvCpx1 and 2). Sequences are shown in single-letter amino acid code; residues shared by 6, 5, or 4 of the 6 sequences are highlighted in yellow, green, and blue, respectively. Conserved hydrophobic sequences are highlighted in red, and C-terminal cysteine residues that are presumably isoprenylated are displayed on a black background.

B Normalized synchronous EPSCs during 10 Hz stimulus trains

Figure EV2. Analysis of the kinetics of evoked NMDA receptor-dependent EPSCs (related to Fig 4E).

- A The plot of cumulative charge transfer during the 10-Hz stimulus train as a function of the action potential number is recorded in WT cortical neurons that were infected with a control lentivirus (Control) or a lentivirus expressing complexin shRNAs (Cpx1/2 DKD) without or with co-expression of rCpx1 or nvCpx1.
- B The degree of synaptic depression as a function of the action potential number is plotted as described for (A).

Data information: Data shown are means \pm SEM; statistical assessments were performed by two-way ANOVA (A) or Student's *t*-test (B) comparing each condition to control (**P* < 0.05; ***P* < 0.01). The data from the experiments shown in Fig 4E, and the number of neurons/cultures analyzed correspond to those listed in the legend to Fig 4E.

Figure EV3. Analysis of the kinetics of evoked NMDA receptor-dependent EPSCs (related to Fig 5E).

- A The plot of cumulative charge transfer during the 10-Hz stimulus train as a function of the action potential number is recorded in WT cortical neurons that were infected with a control lentivirus (Control) or a lentivirus expressing complexin shRNAs (Cpx1/2 DKD) without or with co-expression of nvCpx²⁸⁻¹²¹ or nvCpx¹⁻⁹⁰.
- B The degree of synaptic depression as a function of the action potential number is plotted as described for (A).

Data information: Data shown are means \pm SEM; statistical assessments were performed by two-way ANOVA (A) or Student's t-test (B) comparing each condition to control (*P < 0.05; **P < 0.01; ***P < 0.001). The data from the experiments shown in Fig 5E, and the number of neurons/ cultures analyzed correspond to those listed in the legend to Fig 5E.