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Supplementary Notes. Computational strategies for SPIDER 

Theory 

The observed image Y can easily be more than 105 pixels and thus gives a vector y with more than 

a hundred thousand elements. The vector x is much larger: with a sub-grid oversampling of 4 by 4, it will 

have 1.6 million elements and the matrix C will have that many rows and columns. Although it is sparse, it 

might not fit into memory and even if it did, computation times would be huge. 

Fortunately, we do not have to solve the whole system at once: we can split Y into sub-images 

(patches) and do the regression for each of them. Suppose Y has n by n pixels and the oversampling factor 

is s. Then X will have m = sn rows and columns and the matrix C will have m2= s2n2. Solving a system of p 

equations takes time proportional to p3, so for the full system the time needed would be proportional to 

s6n6. If we divide Y into k by k patches, we need a time proportional to s6(n/k)6 for each of them. There are 

k2 patches, so total time would be proportional to s6n6/k4. This is an attractive result: dividing Y in 4 by 4 

patches already speeds up the calculations 256 times. This analysis shows the principle of divide-and-

conquer, but it ignores one important aspect. A proper model for an observed patch of Y should include a 

border area at all sides with half the width of the PSF, to account for contributions by emitters at the 

borders. We call this width b. This means that a patch has dimensions n = k + 2b by n = k + 2b and thus at 

a certain value of k, the contribution of b gets so influential that there will be no gain anymore. We also 

observed that in any iteration to find the L0 penalized solution, elements of 𝒙�̃� that are close to zero stay 

close to zero. So they can be eliminated from the equations beforehand, giving an enormous speed-up. 

More elements are made zero as a result of the iteration, so we can eliminate more and more of them in 

the subsequent ones. 

Practice 

 The SPIDER algorithm is, as already said, sensitive to high oversampling of the image patches as 

the matrices used for calculation can be too large to fit the memory of the computer. Therefore, we have 

performed a test on the exact times SPIDER needs to perform a calculation (per frame) for different patch 

sizes (k = 4, 8, 16 and 32 pixels) at different oversampling factors (s = 1, 3, 5 and 7) with 50 repetitions per 

calculation. Calculations were also performed for CSSTORM. The results are shown in Supplementary 

Table S2. The data set used for the calculations are the 50 random simulation maps with a density of 10 

µm-2. One should keep in mind that the density of the data set also plays a role in computation time (more 

emitters on the map mean more signal and thus a more complicated fit). The overlap (i.e. border area b) 

between the different patches, to accommodate for emitters on the border of the patches, was 4 pixels 

on every side of the patch. 

The calculations were performed on a computer with an Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz 

CPU and 16 GB RAM memory. The computer works with a 64-bit Windows 7 professional operating system. 

The version of Matlab used for these calculations is the R2014a version. 

  



Penalized least-squares with an L0-norm 

Oversampling 
factor (s) 

False Positives (-) # emitters (-) 

1 0 46 

2 0 48 

3 0 36 

4 0 35 

5 0 30 

6 0 32 

7 0 26 

8 0 22 

Penalized least-squares with an L1-norm 

Oversampling 
factor (s) 

False Positives (-) # emitters (-) 

1 16 77 

2 8 86 

3 7 84 

4 6 76 

5 5 75 

6 9 61 

7 9 56 

8 7 57 
 

Supplementary Table S1. Comparing the results obtained with the L0-norm penalty to the ones obtained 

with the L1-norm penalty in super-resolution imaging. The results obtained on a simulated map of 20 

randomly distributed emitters, which corresponds to a molecule density of 1.25 µm-2, are reported. All the 

solutions obtained represent the sparsest solutions with a recall rate of 100 %. The analysis was done with 

an oversampling factor s increasing from 1 to 8, therefore decreasing the size of the pixels on the super-

resolution grid from 166 nm to 21 nm. The simulated emitters are located at random positions on the 

images. One can notice that the L0-norm penalty always provides sparse solutions without false positive 

emitters (for a lateral tolerance disk with diameter 200 nm). This makes SPIDER an excellent method for 

quantitative analysis of real data. 

  



SPIDER (in seconds) 

Patch size (k) 
Oversampling factor (s) 

1 3 5 7 

4 0.145 ± 0.015 3.938 ± 0.120 17.874 ± 0.603 60.689 ± 2.694 

8 0.097 ± 0.020 2.356 ± 0.088 12.095 ± 0.485 45.280 ± 2.418 

16 0.169 ± 0.019 2.055 ± 0.063 11.946 ± 0.515 MEM 

32 0.187 ± 0.017 2.663 ± 0.106 148.630 ± 34.210 MEM 

CSSTORM (in seconds) 

Patch size (k) 
Oversampling factor (s) 

1 3 5 7 

4 79.212 ± 8.369 80.916 ± 3.443 93.811 ± 2.239 139.428 ± 5.722 

8 21.860 ± 1.023 37.321 ± 1.457 135.103 ± 2.753 419.323 ± 7.414 

16 10.363 ± 0.555 213.276 ± 6.468 * * 

32 147.898 ± 6.121 * * * 
 

Supplementary Table S2. Calculation time of deconvolution methods. Calculation times (in seconds) for 

SPIDER and CSSTORM on the 50 random simulation maps of density 10 µm-2. The calculations are done for 

different patch sizes (k = 4, 8, 16 and 32 pixels) and different oversampling factors (s = 1, 3, 5 and 7). The 

border area b was taken to be 4 pixels on every side of the patch. MEM: insufficient memory for 

calculations; *: calculation times > 1800 s. It should be clear that SPIDER is faster than CSSTORM with a 

factor 10 – 100. 

  



Figures of merit for randomly positioned fluorophores 

Density (µm-2) Recall (%) Accuracy (nm) False positives (-) 

0,5 5,33 ± 7,78 128,09 ± 47,89 7,55 ± 0,65 

2 19,24 ± 6,59 125,13 ± 21,35 25,07 ± 2,24 

4 31,08 ± 6,50 117,76 ± 11,55 39,30 ± 3,95 

7 41,75 ± 6,86 109,52 ± 6,99 48,16 ± 5,46 

9 46,27 ± 7,20 104,93 ± 6,07 48,37 ± 6,11 

12 50,54 ± 7,61 99,15 ± 4,74 45,22 ± 6,78 

15 52,95 ± 7,82 94,33 ± 3,94 39,53 ± 6,73 
 

Supplementary Table S3. Figures of merit for a set of emitters with a random placement at different 

densities. The table reports the figures of merit obtained by using emitters with a random placement as 

‘found’ emitters. The figures of merit were obtained by using 2,500 combinations for every density, for a 

lateral tolerance disk with diameter 200 nm. The number of emitters with random placement used for the 

evaluation was equal to the number of true fluorophores (i.e. sparsity of 100 %). 

  



 

Supplementary Figure S1. Method for performance evaluation. Graphical explanation of the method 

evaluation, representing the four different figures of merit (recall, accuracy, false positives and sparsity) 

that are used. In this figure, one can recognize the true positions of the fluorophores of the ground-truth 

dataset in blue and the positions of the detected fluorophores in red. For every detected fluorophore, a 

lateral tolerance disk is drawn around it to visualize to which true fluorophores it can possibly be assigned. 

When it can be assigned to multiple true fluorophores, it will be assigned to the closest one. If a true 

fluorophore is assigned to multiple detected fluorophores, a ‘virtual’ fluorophore is calculated from the 

center of mass of these detected fluorophores and further calculations are done using this ‘virtual’ 

fluorophore. This example has a recall of 50 % (2 of the 4 fluorophores of the ground-truth dataset 

detected), an accuracy which is the average of length of the black arrows, 1 false positive (fluorophore 4) 

and a sparsity of 100 % (4 detected fluorophores for 4 true fluorophores). 

  



 

Supplementary Figure S2. Performance benchmark of CSSTORM, FALCON and SPIDER for a PSF / pixel 

size ratio of 3.9. The simulation images correspond to an average photon number of 5,000 per molecule 

(standard deviation of 2,000) and a background of 100 photons with a Poisson distribution. The 

comparison shows that FALCON (blue) performs better than the results shown in Figure 2 of the 

manuscript (PSF / pixel size ratio of 2.35), as expected for a localization-based method, whereas SPIDER 

performs equally well. This shows that SPIDER performs steadily in different situations with different PSF 

/ pixel size ratios. 



 

 

 

Supplementary Figure S3. Insights on the data and results of a series of three juxtaposed circles. We 

report in (a) several frames composing the simulated data of the three juxtaposed circles of size 400, 600 

and 800 nm and in (b) the longitudinal cross-sections of the indicated line for CSSTORM, FALCON and 

SPIDER. The different frames presented in (a) show the high density of the data and the huge overlap of 

emitters (τoff/τon ratio of 31, leading to a fluorophore density of 15 µm-2 per frame). The longitudinal cross-

sections of the three juxtaposed circles then show that CSSTORM gives biased results, towards the middle 

of the simulated circles, while FALCON and SPIDER allow the structure to be reliably recovered.  

  



 

Supplementary Figure S4. Fast SPIDER super-resolution for mitochondria in a HEK293-T cell labeled with 

DAKAP-Dronpa. The live-cell images of a region sized 4 µm by 8 µm (region indicated by the box in Fig. 4a 

of the manuscript) obtained averaging over 1,000 frames (blue) and different snapshots at times 3 s (red), 

10 s (green), 20 s (cyan) and 30 s (yellow) with a time sampling of 3 s are shown in the maps. The profiles, 

corresponding to the lines marked in these images, are shown in the graph next to it. They show that 

averaging the results obtained over all the frames leads to a loss of resolution. It should be clear that the 

blurred and thickened membrane, obtained by averaging the signal over all the frames, is actually due to 

a movement of the cell along the acquisition as the center of the membrane changes along the profiles of 

the different snapshots. 

  



 

Supplementary Figure S5. Estimation of the image resolution by Fourier Ring Correlation (FRC) on the 

HEK293-T cell labeled with DAKAP-Dronpa. The image resolution has been estimated on the results 

obtained by SPIDER. The figure shows the SPIDER image (rendered with a 25 nm PSF) and the 

corresponding FRC curve (in black) of the resulting image over (a) all frames; (b) the first 3 seconds (100 

frames); (c) the first second (30 frames) and (d) the first 500 ms (15 frames). Respective values for image 

resolution are 54.45 nm, 78.98 nm, 94.78 nm and 92.73 nm. The threshold value (shown in blue) used here 

is 1/7, a value corresponding to to the literature for localization microscopy images (see reference 3 in the 

manuscript). The FRC curves translate that image resolution improves with increasing sampling time. 

However, the effects of sample shifting (see Supplementary Fig. S4) and sub-sampling on a super-

resolution grid are observed as well, both decreasing when sampling time decreases.  



Supplementary Video S1. Raw movie data for a HEK293-T cell 

Movie that shows the acquired data (frame per frame, 30 fps) for mitochondria in HEK293-T cell. The movie 

(512 x 512 pixels, 100 nm pixel size) is reconstructed from 1,000 camera frames (2 dummy frames, not 

shown) with an acquisition time of 30 ms per frame. It shows the high density of the acquired data. 

Emitters can never be observed independently (in every individual frame), which leads to a high degree of 

overlap at all times. This results in few observable blinking. The wide-field image (mean image of the 1,000 

frames) and the resolved SPIDER image (mean image of the 1,000 super-resolution frames) can be found 

in Figure 4a in the manuscript. Scale bar: 10 µm. 

  



Supplementary Video S2. SPIDER on an image patch showing a clear recovery of individual emitters 

This movie (40 x 80 pixels, 100 nm pixel size) is a collection of individual frames obtained by the SPIDER 

super-resolution method for mitochondria in HEK293-T cell, shown in Figure 3 of the manuscript. It shows 

the individual spotted positions, frame per frame, for 100 frames (corresponding to 3 s of data acquisition) 

for the highlighted zone. Scale bar: 1 µm. 

  



Supplementary Code S1. Spider algorithm 

The supplementary code includes all the functions needed to perform the SPIDER analysis on high-density 

images. It uses a simple interface routine that serves as a buffer between the user and the calculations 

and is easily adaptable to the needs of these high-density images. Two demo sets (one on simulated data 

and one on experimental data) have been included in order to demonstrate the algorithm. 

 


