
Supplemental Material

This document supplements the procedures and results presented in our
main article “Cross Platform Comparison Of Microarray Data Using Order
Restricted Inference”. Appendix A provides additional information on the
quality control and data cleaning that has been performed prior to data
analysis. Appendix B describes the annotation and probe matching that
lead to the selection of 5927 common reporters, which are the basis of our
cross platform comparison. This section also presents an assessment of the
degree to which probe sequences unambiguously map to a recent version of
the rat genome.

Appendix C presents additional details regarding the procedures pro-
posed to estimate the variance components in situations with order restricted
fixed effects, as well as, a performance comparison of the proposed methods
with standard procedures. An additional table giving overall and specific
agreement of test decisions inferred from raw and normalized data is re-
ported in Appendix D. In Appendix E we present some further results on
how agreement can be improved if low signal probes are removed from the
analysis by a filtering procedure.

Appendix F presents an alternative test statistic based on the residual
sum of squares of a linear model. Furthermore, differences in performance
compared to the statistic based on isotonic regression, which is used for
our main results, are discussed. Finally, Appendix G reports the session
information of our R installation which provides detailed version information
on all R-libraries used to compute the results.

A Data Cleaning

The experimenters’ comments at the ArrayExpress entry of the Illumina
dataset (E-TABM-554) indicate that certain arrays from this experiment
might be of inferior quality:

IMPORTANT: 6C-1 and 1-6B1 are outlier because of poor
cRNA yield. 4A-1 (low cRNA yield too) and 4D-1 seems to have
been switched during processing. 2D1 and 5A3 were also mistake
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(samples picked from the wrong well in the original 96 plates) as
they seems to cluster with B samples (75% liver-25% Kidney).

To investigate this and other potential quality problems, we have con-
ducted a quality assessment of the arrays used in this analysis. We visually
inspected and compared the signal distributions of all chips from each plat-
forms using boxplots and density estimates. Furthermore heatmaps and
hierarchical cluster trees of the data were used to identify potential outlier
arrays. This assessment confirms the experimenters comments regarding the
Illumina dataset. In the Affymetrix data one array of doubtful quality was
identified. The measured expressions on this array are on average twice as
high with considerably higher variance than in the remaining Affymetrix
samples. Hierarchical clustering using euclidean distance and complete link-
age puts the array into a class of its own. The Agilent data showed no
obvious outliers in terms of signal distributions. Clustering results group
this dataset into the four titration groups. Consequently we have taken the
following actions:

Illumina • All arrays with cRNA yield below 10 were removed from the
analysis. These are samples: 6C-1, 4D-1, 2C-2, 6B-1

• Arrays 5A-3 and 2D-1 are removed due to ambiguous labelling.
We did not re-label these arrays based on the clustering results.

• Array 4A-1, however, was relabeled as a kidney sample, following
the suggestion by the experimenters.

Affymetrix • Array NUID-0000-0064-2511 was removed from the dataset
due to deviant expression distribution

B Annotation And Probe Matching

Probe annotations were based on the most recent array descriptions avail-
able at the time of annotation, which was January 23rd 2010. The file
acquired from Affymetrix’ website http://www.affymetrix.com had version
number NA30. The annotation file found at http://www.agilent.com was
called 014879_D_Genelist_20100118.zip indicating a creation date of Jan-
uary 1st 2010. The chip description downloaded from Illumina’s server at
http://www.illumina.com was version 1.0-R3. Unfortunately, these files are
available on sites that require a free user registration, so no public links can
be cited.

To match probes across platforms, reporters targeting RefSeq ‘NM’ an-
notated mRNA transcripts [6] in all three platforms were chosen for analy-
sis. Whenever more than one reporter was available for a single transcript,

2



Matched Missed

unambiguous ambiguous

Affymetrix 5,335 (90.0%) 119 (2.0%) 473 (8.0%)

Agilent 5,394 (91.0%) 514 (8.7%) 19 (0.3%)

Illumina 5,406 (91.2%) 393 (6.6%) 128 (2.2%)

Overlap 4,735 (79.9%) 76 (1.3%) 14 (0.2%)

Table 1: Alignment results for the 5,927 probes used in the main analysis.
The vast majority of probes matched their target transcript. Some of these
were also classified as ambiguous, indicating that they had a strong second
best hit other than their target. Only a small fraction did not yield the
maximum score for an alignment with the specified gene and thus missed its
target. Altogether, 5,389 out of 5,927 probes matched their target sequences
in all three platforms.

a random reporter was selected. Taking into account different microar-
ray designs, the term ‘reporter’ indicated a probeset for Affymetrix and
a long-oligo probe for Agilent and Illumina. A table of the selected re-
porters with corresponding mappings is available on the articles website at:
http://statistics.msi.meduniwien.ac.at/float/cross platform/.

Careful considerations lead to this selection: Relevant comparison needs
to match common use as closely as possible. Typical microarray users rely
on the annotation provided by the manufacturer and do not have probe
reannotation tools at their disposal. Moreover, the RefSeq ‘NM’ transcripts
have been well established, providing a fair basis for probe design to all
platforms.

Holloway et al. [3] have pursued a similar strategy by selecting for Uni-
Gene IDs common to all platforms. They have assessed potential changes
to their results due to more elaborate probe sequence matching, as unlikely.
We agree for two reasons.

Firstly, the vast majority of probes are indeed correctly annotated, as
the reanalysis in Table B shows. Only 14 genes were in fact missed by all
platforms, while 5,389 out of 5,927 (91%) matched the right transcript in all
platforms.

Secondly, to affect analysis, incorrectly assigned probes would need to
have a strong bias for expression in either kidney or liver. That is in fact
unlikely. Even more so, when cross-hybridizing probes are considered, that
indistinguishably report different transcripts. In this case, all involved tran-
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scripts would need to have a bias in the same direction.

Methodological details

To reconfirm the validity of the probe annotation files used and to assess
the probe matching procedure performed, the 5,927 reporters for ‘NM’ tran-
scripts present in all three platforms were BLAST-ed (http://blast.ncbi.nlm.nih.gov)
against the Reference mRNA Sequences database (refseq rna, update from
October 10th 2010).

The search was limited to the organism in question Rattus norvegicus
(taxid: 10116), models (‘XM’ identifiers) and uncultured/environmental se-
quences were excluded. The blastn algorithm was applied [1], in order not
to limit the results to hits of highly similar or perfect match sequences, but
to equally allow for partially matching sequences. This is especially relevant
for long-oligo probes. Short and long-oligos were BLAST-ed separately, such
that the long-oligo queries were unaffected by BLAST’s automatic parame-
ter adjustment for short input. Default algorithm parameters were used and
a maximum of five aligned sequences was obtained for each queried probe.

It was then checked, if the RefSeq ID of the top ranked BLAST hit had
an E-value of less than 0.001 and if it matched the transcript ID claimed by
the manufacturer. A probe meeting these criteria was considered a match
and a miss otherwise. To further assess the amount of cross-hybridization
for each platform, we evaluated the second best hits’ potential to interfere
with the target transcript measurement [4]. To this end, it was determined
for which probes the second best hit would equally have an E-value of no
more than 0.001. This subgroup of matched probes was denoted ambiguous
probes.

Affymetrix probesets were classified as matches, if more than half of their
probes were matches, while probe sets were classified as misses, if more than
half of their probes were misses, and as ambiguous matches otherwise.

At this point, we would again like to emphasize, the difficulty in choosing
a comparable set of probes across platforms. On the one hand, one would
have to exclude all potentially cross-hybridizing reporters from the analysis,
in order not to confound the biophysical properties of a given platform with
the quality of its probe design. On the other hand, valid probe design is
an inherent quality feature of the platform, that needs to be addressed in a
separate comparison, which goes beyond the scope of this study.

Regardless, for the EMERALD data set analysed here, the fraction of
potentially cross-hybridizing probes affects only 2.0–8.7% of the reporters,
and are thus clearly not prevalent.

Table 2 shows percent specific agreement (see Section 2.5 of the main
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all:up all:dn all:dc hit:up hit:dn hit:dc miss:up miss:dn miss:dc
Affy-Agil:None 82.22 77.69 0.12 83.58 78.49 0.00 76.43 74.31 0.59
Affy-Agil:Base 82.74 73.67 1.87 84.17 75.60 1.28 76.43 66.17 4.20
Affy-Agil:Quan 81.88 75.39 1.75 83.46 76.96 1.35 75.03 68.77 3.38
Affy-Illu:None 84.72 84.25 0.36 86.10 85.20 0.22 78.65 79.67 0.96
Affy-Illu:Base 83.47 69.83 1.10 85.05 72.14 0.67 76.32 60.49 2.85
Affy-Illu:Quan 81.65 72.10 1.64 83.59 73.80 1.48 72.83 64.72 2.30
Agil-Illu:None 82.10 78.22 0.44 83.58 79.16 0.34 75.87 73.98 0.81
Agil-Illu:Base 80.60 62.98 2.49 81.93 64.68 1.96 74.73 56.29 4.61
Agil-Illu:Quan 79.37 76.13 1.69 80.92 77.13 1.58 72.53 71.83 2.18

Table 2: Specific agreement for probes of different annotation quality. First
three columns give specific agreement achieved when all common probes
are considered. Columns 4 to 6 give respective figures when only probes
classified as unambiguous hits (across all platforms) are considered. The
last three columns show results for the remaining probes

article for definition) obtained from different subsets of reporters. The first
three columns give figures for all nine comparisons between platforms and
normalizations when all 5927 common reporters are used to compute spe-
cific agreement. These figures are identical to those shown in Figure 6 of the
article. The remaining six columns show results for the same comparisons
either using only reporters that could be consistently mapped across all three
platforms or only the remaining missing or ambiguous reporters. As can be
seen, using only reporters of high annotation quality, improves agreement by
approximately 1 percentage point. Agreement on the remaining reporters
is around ten percentage points lower. This clearly indicates that badly an-
notated probes are a source of disagreement between platforms. Agreement
of normalized data is worse compared to non-normalized data regardless of
annotation quality. This excludes annotation problems as a possible source
of the decrease in agreement observed on normalized data.

C Estimation Of Variance Components

C.1 Introduction

Our methods for estimating the variance components are based on the idea
to estimate the variance components using a model matrix that is condi-
tional on the estimated isotonic regression. Based on this approach, we
suggest using estimates from either Henderson’s Method III or Restricted
Maximum Likelihood procedures (REML) [7]. Both methods can deal with
imbalanced designs that arise when groups are pooled to fulfill the mono-
tonicity restriction.

Section C.2 summarizes the model definition used in both approaches,
which is the same as in the article. Specifics regarding monotonic regression
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and how the model matrix is conditionally manipulated are presented in Sec-
tion C.3. Section C.4 outlines the approach based on Henderson’s Method
III and Section C.5 that based on REML respectively. Section C.6 finally
presents results from simulation experiments, that demonstrate the gain in
efficiency achieved over unrestricted procedures together with a performance
comparison between the two approaches.

C.2 Model Definition

We suppose the following mixed effects model:

yijk = µ+ αi + βj + γij + εijk (1)

µg, αi fixed effect (2)

βj ∼ N(0, σβ) (3)

γij ∼ N(0, σγ) (4)

εijk ∼ N(0, σε), (5)

which implies a sum to zero constraint on the αi (i ∈ {1, . . . , a}) (i.e.
∑a

i=1 αi =
0). Furthermore we impose the following order restriction:

α1 ≤ α2 ≤ · · · ≤ αi ≤ αi+1 ≤ · · · ≤ αa (6)

or,

α1 ≥ α2 ≥ · · · ≥ αi ≥ αi+1 ≥ · · · ≥ αa (7)

The aim of our procedures is to estimate the variance terms σi, σγ and
σε from (2-5).

C.3 Monotonic Regression

Monotonic regression is defined as a procedure that finds the best monotonic
fit to a vector of dimension larger than 1. For a given direction (i.e. if it
is known which restriction in (6 - 7) is to be used) isotonic regression [2]
using the ’Pool Adjacent Violators Algorithm’ minimizes the squared error
of the regression fit, through successive pooling of adjacent groups with
order violating means. For a vector of dimension a this returns a partition
of the index set {1, ..., a} into subsets of subsequent indices so that the means
of these aggregated groups fulfill the order restriction. Define the functions
Iup(i), Idown(i) that for each i ∈ {1, ..., a} return the corresponding subsets of
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indices in the partition given by the isotonic regression assuming an upward
or downward trend respectively.

Using model (1), isotonic regressions, for both order restrictions (6,7),
are fit to the means yi = 1

bn

∑
j

∑
k yijk i ∈ {1, ..., a}. The corresponding

isotonic regression fits for any given i are then given by:

y?upi =
1

nb|Iup(i)|
∑
i′∈I(i)

∑
jk

yi′jk, (8)

and

y?downi =
1

nb|Idown(i)|
∑
i′∈I(i)

∑
jk

yi′jk (9)

respectively. The directional decision is then based on which direction
gives the fit with the lowest residual sum of squares. The index set partition
corresponding to monotonic regression for any given index i is therefore
given by

I(i) = Iargminup,down

{∑
i′ (yi′−y

?up

i′ )2,
∑

i′ (yi′−y?down
i′ )2

}
(i) (10)

and the monotonic regression mean of group i by

y?i = y
?argminup,down

{∑
i′ (yi′−y

?up

i′ )2,
∑

i′ (yi′−y?down
i′ )2

}
i . (11)

Conditional on the monotonic regression we then redefine the levels of
the fixed effects αi according to the partition of the index set {1, ..., a}.

As example, consider the vector (y1, ..., y4) = (1, 3, 2, 4) and assume
an upward trend. The isotonic regression would result in the partition of
{1}, {2, 3}, {4} and the corresponding fit is (y?up1 , ..., y?up4 ) = (1, 2.5, 2.5, 4).
Assuming a downward trend all groups are pooled resulting in the parti-
tion {1, 2, 3, 4} and fit (y?down1 , ..., y?down4 ) = (2.5, 2.5, 2.5, 2.5). Based on the
residuals we decide for an upward trend in this case. Consequently, αi which
originally had 4 levels in this example is reduced to the levels 1, {2, 3}, and
4

C.4 Estimation Using Henderson’s Method III

As can be seen in the examples of Section C.3 the model matrix becomes
unbalanced ruling out the typical ANOVA sums of squares decomposition
for estimation of the variance components. Henderson’s Method III is a
generalized ANOVA method that provides variance estimates in situations
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for imbalanced designs. For a detailed outline of the method see for example
Chapter 5.5 of [7], with the special case of the ’with interaction mixed
model’ being treated in Chapter 5.6.d. With Henderson’s procedure the
variance component estimates are obtained as solution of a system of linear
equations involving sums of squares from several submodels. The downside
of this approach is that in certain cases the solutions can become negative.
To avoid negative variance estimates such solutions have to be set to zero.
The corresponding estimation procedures were implemented in R and are
available on request from the authors.

C.5 Estimation Using Restricted Maximum Likelihood

Another possibility to compute estimates for the variance components, is
to use a restricted maximum likelihood procedure [7]. The pooling of order
violating groups in this case is incorporated into the model matrix which is
passed to the estimating procedure. We use the methods implemented in
the R package nlme [5] to acquire estimates using this approach.

C.6 Simulation Results

To assess the potential improvement of order restricted estimation, we com-
pare the following methods to estimate the variance components in our sim-
ulations:

ANOVA The ANOVA estimate (based on the factor levels αi) for balanced
designs. Negative variance estimates are set to zero.

Isotonic ANOVA Henderson’s Method III (based on the factor levels ob-
tained from monotonic regression) as outlined in Sections C.3 and C.4.

REML The variance components are estimated based on the original factor
levels αi using the restricted maximum likelihood approach as imple-
mented in the R package nlme.

Isotonic REML The variance components are estimated based on the fac-
tor levels obtained from monotonic regression (as defined in Section
C.3) using the restricted maximum likelihood approach as detailed in
Section C.5.

Improvements in efficiency through restricted estimation can be expected
for situations where order violations occur frequently. By pooling those,
less group means have to be estimated, enabling degrees of freedom to be
retained. Cases where this is to be expected are situations of no or little
trend across groups.

8



We show by simulation that our methods lead to a considerable improve-
ment in estimation efficiency. This comes at the price of a slightly increased
bias which does, however, converge to zero for increasing numbers of inde-
pendent samples.

Our simulation scenarios are all derived from a parameter setup close to
what we observe in the EMERALD dataset. It is characterized by a rela-
tively large residual error, in comparison with small to medium animal- and
interaction variance, of approximately comparable range. In the reference
scenario the corresponding parameters are set to σβ = σγ = 1

2 and σε = 1.
The sample size parameters a = 4, b = 6 and n = 3 were chosen to replicate
the EMERALD experiment’s design. The reference setup represents a situ-
ation with constant expression across titration groups (i.e. no trend). Based
on this reference scenario we let one or more parameters vary while keeping
the rest fixed. For each parameter constellation the root mean squared error
and bias of the variance component estimates, using all four methods, were
computed using simulated datasets (104 runs).

For each of the scenarios we show plots of the bias and root mean squared
error in the estimate of each components variance across the range of the
variable parameter. The plots are structured in two rows and three columns.
The first row shows the bias and the second the root mean squared error. The
three columns are dedicated to the estimated variance components of the
model. The first corresponds to the individual (Animal) error σβ the second
to the interaction term σγ and the third to the residual error σε. Results
from the four investigated methods are discriminated by different line types
where color differentiates between the REML (red) and ANOVA (black)
based methods and solid and dashed lines between unrestricted (dashed)
and order restricted (solid) procedures.

To demonstrate the improvement in efficiency achieved by restricted es-
timation, we first show scenarios with varying degrees of a trend throughout
the titration groups. For this purpose we add a linear trend, parametrized
by its slope (i.e. (α1, ..., α4) = d ∗ (1, 2, 3, 4)) to the reference setup. Figure
1values in the interval −1 to 1 and is shown on the x-axis. If there is no trend
(i.e. d = 0) or in situations of moderate trends, all restricted procedures lead
to a gain in efficiency compared to their unrestricted counterparts. Mean
squared error is reduced most effectively in the estimation of the interaction
effect. As expected for increasing slopes the performance of the restricted
procedures converges towards that of the unrestricted procedure.

The absolute bias and MSE of the order restricted procedures decreases
for increased sample size when we let the number of independent samples
b vary, ranging from 12 to 60. The results of this simulation are shown in
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Figure 1: Bias and root mean squared error in estimates of each components
variance achieved with linear trends of varying slope. Red lines show val-
ues for REML based procedures; black lines for ANOVA based procedures.
Dashed lines represent unrestricted procedures; solid lines order-restricted
procedures.

Figure 2. As the number of animals (index j) gets larger the bias and MSE
in estimating the variance components decreases. This is a good indication
for asymptotical consistency of our methods.

Finally, to illustrate a key difference between the methods based on
REML and Henderson’s Method III, we let the animal and interaction vari-
ance simultaneously take values in the interval from 0 to 1

2 (i.e. σβ = σγ ∈
[0, 12 ]). Configurations with relatively small variance components are es-
pecially prone to generate data with negative solutions in the procedures
derived from Henderson’s method. Setting these estimates to zero, in order
to avoid negative variance estimates, decreases the accuracy of this method
compared to the REML based procedures. Figure 3 shows that the advan-
tage of REML is most apparent in situations where the animal and interac-
tion variance are close to zero and decreases for larger values.
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Figure 2: Bias and root mean squared error of estimates of each components
variance with different sample sizes (number of animals). Red lines show val-
ues for REML based procedures; black lines for ANOVA based procedures.
Dashed lines represent unrestricted procedures; solid lines order-restricted
procedures.

Independent from differences in efficiency, an apparent advantage of the
ANOVA based methods over REML procedures are a much quicker compu-
tation time and closed solutions for the estimates. In our implementation the
iterative REML procedures are slower by approximately a factor 100. Fur-
thermore, we encountered failing software due to problems with convergence
and computational singularity in a small proportion of our simulations. In
most cases these problems could be overcome by readjustment of certain
control parameters. This however, required human intervention during the
otherwise automatic code execution. Nevertheless, on the real dataset no
such case was encountered and the size of the investigated data was small
enough to feasibly use REML procedures.
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Figure 3: Bias and root mean squared error achieved in situations of varying
animal and interaction variance. Red lines show values for REML based
procedures; black lines for ANOVA based procedures. Dashed lines represent
unrestricted procedures; solid lines order-restricted procedures.

D Additional Table: Agreement Between Normalizations

Table 3 shows overall and specific agreement, as defined in Section 2.5 of
the main article, for pairwise comparisons between all combinations of test
decisions inferred from raw or normalized data.

None-Base None-Quan Base-Quan
all up none down all up none down all up none down

Affy 0.77 0.92 0.7 0.59 0.64 0.85 0.51 0.48 0.81 0.91 0.71 0.82
Agil 0.56 0.78 0.29 0.44 0.63 0.78 0.5 0.53 0.72 0.88 0.54 0.7
Illu 0.84 0.91 0.81 0.74 0.71 0.82 0.66 0.6 0.77 0.87 0.72 0.72

Table 3: Overall and specific agreement for pairwise comparisons between
normalizations.
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E Agreement Of Test Decisions Stratified By Overall Ex-
pression

As shown in Section 3.3 of the main article, Normalization has negative ef-
fects on the agreement of differential expression analysis across platforms.
In this section we examine the question whether these effects are homoge-
neous across the whole signal range or only apply to genes with low (on
average) expression values. For this purpose we recalculated the agreement
measures using probes for which the average (over all samples) expression
exceeded a certain threshold. The threshold was chosen as such that the
median expression of the included probes had to be larger than a given
percentile of the data distribution of median expressions in at least one of
the three platforms. For example: At the 10 percent threshold we removed
all probes for which the median expression did not exceed the 10 percent
smallest median expressions in any of the three platforms. In doing so, we
mimic an unspecific filtering procedure which removes probes of low signal
from the final analysis in order to achieve a better power for differential
expression inference. Such filtering is often applied, as it is assumed that
the proportion of true alternatives is larger within genes of higher overall
expression.

Figure 4 shows specific agreement of up and downward trends as well as
the proportion of test decision with contradicting results between different
platforms for all pairwise comparisons of the three platforms. The x-axis
of each panel gives the percentile that the overall per platform expression
median has to exceed in at least one of the three platforms. We observe
that agreement increases both for up and downward trends if only highly
expressed genes are examined. At the same time the proportion of genes
for which a contradicting test decision was found between two platforms
decreases.

Figure 5 looks at the proportion of genes rejected at each threshold value.
Overall one can see that the proportion of genes rejected among the selected,
increases (column furthest left), and that the proportion of genes selected
with an upward trend, decreases. Assuming a higher mRNA concentration
in the kidney samples provides an explanation for this phenomenon as it
amplifies any upward trend and attenuates the downward trends. It is hence
reasonable to believe that the available power to reject an upward trend is
generally very high and cannot be to a great extent improved by the filtering
procedure. Improving the power to detect a downward trend thereby shifts
the proportion of directional decisions to the advantage of downward trends.
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Figure 4: Specific agreement and contradicting decisions depending on a
threshold that the median signal of a gene has to exceed in order to be
included in the analysis. First column shows the proportion of discordant
probes (as defined in Section 2.5 of the main article) for the three pairwise
comparisons, if the analysis were restricted to only those measurements ex-
ceeding the threshold. Columns two and three show specific agreement as a
function of the inclusion threshold for up and downward trends respectively.

F Linear Trend Test

To provide a comparison between our pattern based approach to an approach
based on a linear model we have computed an alternative test based on
permutations of the residual sum of squares of a linear regression fit to each
gene according to the following model:

yi = TLλi + TKκi + εi,

where yi stands for the vector of measurments from gene i. TL and TK are
vectors with the titration contents of liver and kidney material (e.g. 0, 14 ,

3
4 , 1)

in the corresponding samples. λi and κi are unknown parameters for the
expression level in liver and kidney that are estimated by ordinary least
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Figure 5: Proportion of genes found with a significant trend at each selection
threshold. The first column shows the proportion of genes with a significant
trend regardless of direction. The second and third column, show the pro-
portions of significant upward and downward trends respectively. Each row
gives results for a different platform.

squares regression. Finally εi stands for the residual error. The ratio between
the residual and total sum of squares defines a statistic that can directly be
used, instead of E2, with the resampling based multiple testing procedure
outlined in Section 2.5 of the main article.

Results from applying this method to our dataset show that neither
statistic is uniformly more powerful across platforms and normalization
methods. For non-normalized data the linear test is slightly better (iden-
tifying between 2 and 4 percent more significant trends). On baseline nor-
malized data the advantage of the linear test is decreased in all platforms.
Regarding the Agilent data, Barlow’s test identifies 2 percent more signifi-
cant trends. However, the statistic based on isotonic regression, outperforms
the linear test on quantile normalized data, identifying 2 to 4 percent more
significant trends between all platforms. We see that the linear trend test
has a slight advantage on non-normalized data. For the normalization that
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provides the most rejections the isotonic regression based statistic is more
favorable across all platforms.

It is theoretically clear that the linear test is more powerful against lin-
ear alternatives, whereas Barlow’s test is more powerful against non-linear
trends. Exploratory analysis of the measurements show that those trends
only found significant by the linear trend test, have an average difference
between liver and kidney three to five times smaller, than those genes found
significant by both genes. Genes found significant only by Barlow’s test,
show considerable differences between slopes from either L to M1 or M2
to K compared to the slope from L to K, which indicates a deviation from
linearity. Saturation as one source of non-linearity may lead to such a distri-
bution of alternatives where the majority of the non-linear trends are those
genes with large effects making them easy to detect by either statistic. If
linearity is provided for genes with smaller differences between the tissues
then the linear trend test can have an advantage over Barlow’s test.

linear E2

Affy:None 3399 3306
Agil:None 4124 3975
Illu:None 3529 3399
Affy:Base 3918 3896
Agil:Base 4335 4433
Illu:Base 3585 3479
Affy:Quan 4044 4171
Agil:Quan 3788 3899
Illu:Quan 3431 3579

Table 4: Number of genes rejected by test statistic. Left column provides
numbers of genes found significant using the linear model based statistic.
Right column shows figures for Barlow’s statistic
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G R Session Info

Finally, we load all procedures into R and print the session info to provide
details on the R-packages used to compute the results in our manuscript:

> source(file.path(wd, Rpath, "testProcedures.R"))

> source(file.path(wd, Rpath, "varCompProcedures.R"))

> source(file.path(wd, Rpath, "utilities.R"))

> source(file.path(wd, Rpath, "dedicatedPlotting.R"))

> sessionInfo()

R version 2.10.1 (2009-12-14)

x86_64-pc-linux-gnu

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8

[5] LC_MONETARY=C LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] grid stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] fBasics_2100.78 timeSeries_2110.87 timeDate_2110.87 MASS_7.3-5

[5] xtable_1.5-5 Biobase_2.4.1 latticeExtra_0.6-5 lattice_0.18-3

[9] RColorBrewer_1.0-2 limma_3.2.3 orQA_0.2.0 nlme_3.1-96

[13] genefilter_1.28.2 Rcpp_0.8.6 gtools_2.6.1 gdata_2.7.1

[17] multicore_0.1-3

loaded via a namespace (and not attached):

[1] annotate_1.22.0 AnnotationDbi_1.6.1 DBI_0.2-5

[4] RSQLite_0.9-2 splines_2.10.1 survival_2.35-8
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