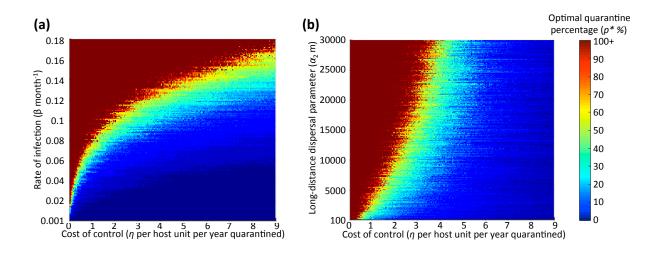
Management of invading pathogens should be informed by epidemiology rather than administrative boundaries

Supplementary Material

Robin N. Thompson^{a,*}, Richard C. Cobb^b, Christopher A. Gilligan^a, Nik J. Cunniffe^a


^a Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK

^b UC Davis Department of Plant Pathology, One Shields Avenue, Davis, CA 95616, USA

*Corresponding author. Present address: Department of Zoology, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK. E-mail address: robin.thompson@lmh.ox.ac.uk (R.N. Thompson).

Figure

Figure S1. The optimal percentage of the county to quarantine (p^*) as a function of the cost of quarantine (η per host unit in the quarantine region per year) and the epidemiological parameters: (a) rate of infection (β); (b) scale of pathogen dispersal (α_2). In (a), β is incremented in steps of size 0.001 month⁻¹ and η in steps of size 0.067. To reduce the computational resources required to produce these results, instead of running new simulations for each (η , β) pair, a database of 1000 simulations is produced for each β value examined. For each (η , β) pair, 500 simulations are then sampled out of the 1000 reference simulations. Subfigure (b) is created similarly, but with α_2 incremented in steps of 100 meters.

Table

Table S1. Table of parameters for the metapopulation disease spread model.

Parameter	Meaning	Value used in simulations
W	Horizontal extent of county	50 km
M + 1	Number of patches in the county	1000
L	Number of nearby patches considered on each side of county	200
$S_i(t)$	Number of susceptible host units in patch <i>i</i> at time <i>t</i>	Initially, all host units in the landscape are susceptible
$I_i(t)$	Number of infected host units in patch <i>i</i> at time <i>t</i>	Initially no host units in the landscape are infected
$N_i = S_i + I_i$	Number of host units in patch <i>i</i>	Sampled from Uniform[6,14] distribution
β	Rate of infection	0.1 month ⁻¹ (except where stated)
$\beta Z \psi_j$	Rate of primary infection on susceptible host units in patch <i>j</i> (where <i>Z</i> is strength of infection source outside the landscape)	Z = 400 host units, ψ_j given in text

$eta \phi_{ij}$	Rate of secondary infection between infected host units in patch <i>i</i> and susceptible hosts in patch <i>j</i>	ϕ_{ij} given in text
γ	Proportion of short-range dispersal	0.99
α1	Spatial scale of short-range spread	20 m
α2	Spatial scale of long-range spread	10 km (except where stated)
$N_{ m max}$	Maximum number of host units that any patch can accommodate	20
d	Distance between primary infection source and landscape	30 km
η	Cost of quarantine per host unit per year	See figures
Т	Timescale over which quarantine is applied, which begins when the disease is first detected in the landscape	24 months
λ	Average rate at which each host unit is traded out of the county	$1/12 \text{ month}^{-1}$
q	Probability of a traded infected host unit avoiding disease detection in the trade network	0.1
ρ	Proportion of host units in nurseries	0.01
Α	Cost due to quarantine of further counties if disease escapes	10,000
$ au_n$	Average time after infection that disease in nursery hosts is detected	6 months
$ au_w$	Average time after infection that disease in hosts in the wider environment is detected	36 months
r	Average rate at which infected hosts are detected	$\frac{1}{\tau_n}\rho + \frac{1}{\tau_w}(1-\rho) \text{ month}^{-1}$