Cell Reports Supplemental Information

C. elegans Body Cavity Neurons Are Homeostatic Sensors that Integrate Fluctuations in Oxygen Availability and Internal Nutrient Reserves

Emily Witham, Claudio Comunian, Harkaranveer Ratanpal, Susanne Skora, Manuel Zimmer, and Supriya Srinivasan

Figure S1

Figure S1. GPA-8 is required to maintain peripheral fat levels, related to Figure 1.

(A) All viable *C. elegans* $G\alpha$ mutants were fixed and stained with oil Red O. Fat content was quantified for each genotype and is expressed as a percentage of wild-type animals ± SEM (n=10–20). ***, p<0.001 by Student's t-test.

(B) Food intake was measured by counting the rhythmic contractions of the pharyngeal bulb over a 10 s period using a Zeiss M2-Bio microscope at 10X magnification. Data are expressed as a percentage of wild-type animals ± SEM. n.s., not significant by Student's t-test.

Figure S2. Oxygen-dependent fat regulation is not a function of the hypoxiasensing pathway, related to Figure 3.

(A) Representative images are shown of animals fixed and stained with oil Red O (upper panels). Fat content was quantified for each genotype and is expressed as a percentage of wild-type animals ± SEM (lower panels; n=8-10). No significant differences were observed by one-way ANOVA.

(B) Wild-type adult animals were fasted for either 2, 3, or 4 h. Representative images are shown of animals fixed and stained with oil Red O (upper panels). Fat content was quantified for each condition and is expressed as a percentage of fed animals \pm SEM (lower panels; n=11-18). ***, p<0.001 by Student's t-test.

(C) Wild-type adult animals on live bacteria were exposed to either 21% or 10% oxygen for a period of 2.5 h. Representative images are shown of animals fixed and stained with oil Red O (upper panels). Fat content was quantified and is expressed as a percentage of animals exposed to 21% oxygen \pm SEM (lower panels; n=17-19). n.s., not significant by Student's t-test.

(D) Wild-type adult animals raised on live bacteria were washed once and transferred to plates containing heat-killed bacteria. Animals were exposed to either 21% or 10% oxygen for a period of 2.5 h. Representative images are shown of animals fixed and stained with oil Red O (upper panels). Fat content was quantified and is expressed as a percentage of animals exposed to 21% oxygen ± SEM (lower panels; n=20-23). n.s., not significant by Student's t-test.

Figure S3. *gpa-8* mutants show oxygen-dependent fat regulation on heat-killed bacteria, related to Figure 3.

Adult wild-type adult animals and *gpa-8* mutants raised on live bacteria were washed once and transferred to plates containing heat-killed bacteria. Animals were exposed to either 21% or 10% oxygen for a period of 2.5 h. Representative images are shown of animals fixed and stained with oil Red O (upper panels). Fat content was quantified and is expressed as a percentage of wild-type animals exposed to 21% oxygen \pm SEM (lower panels; n=20-21). **, p<0.01 and ***, p<0.001 by two-way ANOVA.

Figure S4

Figure S4. Properties of URX neurons in wild-type, *gpa-8* mutants and *gcy-36* mutants, related to Figure 4.

(A) We imaged mCherry fluorescence in wild-type and *gpa-8* animals expressing both GCaMP5k and mCherry under the control of the *flp-8* promoter. Images were taken in animals exposed to 21% oxygen. For each genotype, the fluorescence intensity was imaged at the same exposure, determined to be within the linear range. Fluorescence intensity was quantified and expressed as an average \pm SEM (n=34). n.s., not significant by Student's t-test.

(B-D) Maximum $\Delta F/F_0$ values at 21% oxygen are plotted against the baseline fluorescence at 10% oxygen (F₀) for each animal in the wild-type, *gpa-8*, and *gcy-36* backgrounds (n=25-50).

Figure S5

c head eggs vector vector head eggs pod-2

Figure S5. Inactivation of ACC/*pod-2* and *elo-2* robustly decreases body fat without overt developmental effects, related to Figure 5.

(A) We generated transgenic animals expressing GFP under the control of the ACC/*pod-2* promoter. A representative animal is shown. White arrowheads indicate the pharynx and the intestine. We observed GFP expression solely in the intestine.

(B) Representative images are shown of vector, *pod-2* and *elo-2* RNAi-treated wild-type animals fixed and stained with oil Red O (upper panels). Fat content was quantified for each condition and is expressed as a percentage of vector RNAi \pm SEM (lower panels; n=8-20). ***, p<0.001 by Student's t-test.

(C) Representative images are shown of living day 1 adult vector, *pod-2* and *elo-2* RNAi-treated wild-type animals.

(D) The number of eggs within each wild-type animal treated with vector, *pod-2* or *elo-2* RNAi was counted at the time of URX imaging. Data are expressed as average \pm SEM (n=47-56). n.s., not significant by one-way ANOVA.

Figure S6. RNAi-dependent body fat loss modulates URX neuronal function in a

GPA-8-dependent manner, related to Figure 6.

(A-F) Maximum Δ F/F₀ values at 21% oxygen are plotted against the baseline

fluorescence at 10% oxygen (F_0) for individual wild-type and *gpa-8* animals treated with the denoted RNAi (n=34-56).