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SUMMARY

It is known that internal physiological state, or inter-
oception, influences CNS function and behavior.
However, the neurons and mechanisms that inte-
grate sensory information with internal physiological
state remain largely unknown. Here, we identify
C. elegans body cavity neurons called URX(L/R) as
central homeostatic sensors that integrate fluctua-
tions in oxygen availability with internal metabolic
state. We show that depletion of internal body fat re-
serves increases the tonic activity of URX neurons,
which influences the magnitude of the evoked sen-
sory response to oxygen. These responses are inte-
grated via intracellular cGMP and Ca2+. The extent
of neuronal activity thus reflects the balance between
the perception of oxygen and available fat reserves.
The URX homeostatic sensor ensures that neural sig-
nals that stimulate fat loss are only deployed when
there are sufficient fat reserves to do so. Our results
uncover an interoceptive neuroendocrine axis that
relays internal state information to the nervous
system.

INTRODUCTION

The CNS is a major regulator of body fat and energy balance, in-

dependent of its effects on food intake. With respect to the sen-

sory nervous system, examples of broad sensory dysfunctions

that are accompanied by profound obesity are prevalent in

many species. For example, Bardet Biedl syndrome is charac-

terized by defects in sensory processing and extreme obesity

stemming from nervous system dysfunction in humans and in

model systems (Mykytyn et al., 2002; Davis et al., 2007; Lee

et al., 2011). Enhanced sensory environments have also been

shown to improve metabolic homeostasis (Cao et al., 2011).

However, the mechanisms by which a discrete sensory modality

is connected to peripheral lipid metabolism have been difficult to
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elucidate, in part due to the heterogeneity of sensory dysfunction

in mammalian systems. Thus, the role of sensory systems in

regulating organismal metabolic control has remained under-

appreciated.

A body of evidence suggests that, in addition to external sen-

sory cues, interoception or the sensitivity to stimuli originating

inside the body is also perceived by the CNS (Cannon, 1932;

Craig, 2002). Internal state information is used to modulate

behavior in many species. For example, internal sensing of blood

glucose regulates feeding behavior (Wang et al., 2008; Mighiu

et al., 2013). Intestinal fatty acids are also sensed by the nervous

system in mice, D. melanogaster and C. elegans, and modulate

behavior and physiology (Wingrove and O’Farrell, 1999; Knia-

zeva et al., 2004; Lam et al., 2005; Srinivasan et al., 2008). It

follows then that sensory and interoceptive information is inte-

grated by the CNS for an organism to function as a cohesive

entity. The complexity and redundancy of sensory and homeo-

static functions in mammalian nervous systems make it chal-

lenging to decipher the underlying neuronal sites, cellular mech-

anisms, and the fundamental principles by which this integration

occurs. The genetically tractable nematode C. elegans is an

excellent model system for the study of neural circuits and their

role in governing physiology. Many behaviors have been attrib-

uted to individual neurons and their mechanisms of action re-

vealed (Bargmann, 2006). Despite these tremendous advances,

neural sites of integration between sensory and metabolic infor-

mation have remained unknown.

Food availability is perhaps one of the most-salient external

sensory cues in an animal’s environment (Libert and Pletcher,

2007; Berthoud andMorrison, 2008). InC. elegans, food sensory

cues influence nearly all aspects of behavior and physiology

including sensory functions, locomotion, reproduction, meta-

bolism, and lifespan (Lemieux and Ashrafi, 2015; Srinivasan,

2015). Food presence is encoded by two major neuroendocrine

systems: serotonin (5-hydroxytryptamine [5-HT]) and transform-

ing growth factor beta (TGF-b) (Entchev et al., 2015). 5-HT syn-

thesis and signaling from a single pair of chemosensory neurons

called ADF(L/R) regulates a complex cascade of whole-body

metabolic responses that drive peripheral lipid metabolism and

fat loss (Srinivasan et al., 2008; Noble et al., 2013). In contrast,
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Figure 1. G Protein Signaling from the Body Cavity Neurons Stimulates Body Fat Loss

(A) Representative images are shown of wild-type and gpa-8 animals fixed and stained with oil Red O (upper panels). Fat deposition in the intestinal cells is visible

as stained lipid droplets (white arrowhead). Animals are oriented facing upward with the pharynx (black arrowhead) at the anterior end. Fat content was quantified

for each genotype and is expressed as a percentage of wild-type animals ± SEM (lower panels; n = 20). ***p < 0.001 by Student’s t test.

(B) Biochemical extraction and quantitation of triglycerides was conducted for wild-type and gpa-8 animals. gpa-8 animals have a significant reduction in

triglycerides compared to wild-type animals. *p < 0.05 by Student’s t test.

(C) Representative images are shown of wild-type animals and gpa-8 mutants bearing an integrated atgl-1::GFP transgene (upper panels). The

fluorescence intensity of atgl-1 expression was quantified and is expressed as a percentage of wild-type animals ± SEM (lower panels; n = 10). ***p < 0.001 by

Student’s t test.

(legend continued on next page)
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food absence is encoded in part by oxygen sensation. In a lab

setting on agar plates, worms consume live bacteria whose

respiration drops the local oxygen concentration from 21%

(atmospheric) to 10%–13% (Sylvia et al., 1998; Gray et al.,

2004). Thus, worms avoid 21% oxygen and prefer an intermedi-

ate oxygen concentration in the range of 10%–13% to remain

in the presence of food (Scott, 2011). The avoidance of 21%

oxygen is regulated by a quartet of neurons called the body cav-

ity neurons: AQR, PQR, and the bilaterally symmetric URX pair

(Gray et al., 2004; Cheung et al., 2005; Chang et al., 2006).

Body cavity neurons have a unique anatomical feature: their

cell bodies and ciliated dendrites are positioned within the

coelomic fluid, which functions as the circulatory system for

C. elegans (White et al., 1986). Thus, the body cavity neurons

have the capacity to send and receive endocrine signals from

other organs. Interestingly, food presence encoded by 5-HT

signaling from the ADF neurons impinges on the body cavity neu-

rons and URX neurons receive direct synaptic input from the

serotonergic ADF neurons. These neurons also regulate body

size and lifespan via distinct signaling pathways (Mok et al.,

2011; Liu and Cai, 2013). Despite the importance of the body

cavity neurons in the regulation ofC. elegans behavior and phys-

iology, many questions remain. First, a role for the body cavity

neurons in regulating lipid metabolism, a hallmark of organismal

state, and the underlying cellular mechanism of action has not

been defined. Second, with respect to the body cavity neurons,

the extent to which neural mechanisms of oxygen sensing

impinge upon metabolic outcomes is not known. Finally, despite

the many suggestions that body cavity neurons function as ho-

meostatic sensors, there is no direct evidence showing that

these neurons respond to changes in internal state. Addressing

these questions will define the precise role of the body cavity

neurons in detecting and regulating fat stores and allow the

investigation of mechanisms of integration of external sensory

cues with internal metabolic state.

In the present study, we report that the URX body cavity neu-

rons function as homeostatic sensors that integrate internal

metabolic state with external oxygen availability. The integration

of internal and external signals occurs in the URX neurons via the

second messenger cGMP. The net activation status of the URX

neurons in turn dictates the magnitude of fat loss in the periph-

ery. Our results reveal a homeostatic loop in which neural signals

to stimulate fat loss are only deployed when two conditions are
(D) Representative images are shown of RNAi-treated wild-type animals and gp

quantified for each genotype and condition and is expressed as a percentage of w

and ***p < 0.001 by two-way ANOVA.

(E) Fluorescent image of a transgenic animal bearing a gpa-8::GFP transgene. B

arrowhead indicates expression in URX. A, anterior; D, dorsal; P, posterior; V, ve

(F) Representative images are shown of wild-type animals and gpa-8 mutants fix

gpa-8 expression using the indicated promoter, non-transgenic animals (�) and tr

transgenic animals (black bars) bearing the gpa-8 transgene under the control of t

content to that seen in wild-type animals. Data are expressed as a percentage o

***p < 0.001 by Student’s t test.

(G) Representative images are shown of animals bearing antisense-mediated ina

indicated promoter, non-transgenic animals (+) and transgenic animals (�) are sh

bars) bearing gpa-8 antisense under the heterologous gcy-36 and flp-8 promoters

as a percentage of body fat in wild-type animals ± SEM (n = 10–12). **p < 0.01 a

See also Figure S1.
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met: oxygen availability and the presence of sufficient body fat

reserves. Our results suggest one mechanism underlying the

self-limiting nature of homeostatic systems.

RESULTS

G Protein Signaling from the Body Cavity Neurons
Stimulates Body Fat Loss
To investigate the role of the sensory nervous system in regu-

lating body fat, we conducted a screen of the 19 viable Ga-pro-

tein-null mutants. We focused on the heterotrimeric G proteins

because they are a well-conserved family of signaling proteins

that control second messengers and cellular activity (Bastiani

and Mendel, 2006). The Ga subunits of heterotrimeric G proteins

are regulatory in nature, and relative to mammals, this family is

elaborated in C. elegans, perhaps reflecting the functional diver-

sification of GPCRs. Added advantages of studying this family of

signaling proteins are that the majority of null mutants are viable

and the anatomical locations of each of the Ga proteins have

been precisely defined (Jansen et al., 1999). We measured the

extent to which each of the viable Ga mutants led to a change

in body fat (Figure S1A). We found that gpa-8-null mutants had

a robust decrease in body fat as judged by oil red O staining (Fig-

ure 1A) and by quantitation of biochemically extracted triglycer-

ides (Figure 1B). The decrease in body fat in gpa-8 mutants was

not accompanied by a change in food intake (Figure S1B) or

increased movement (Yemini et al., 2013), suggesting that a se-

lective shift in fat metabolism rather than feeding or locomotion

behavior was responsible for the decreased body fat phenotype

of gpa-8 mutants.

To explore the relationship between loss of gpa-8 and

decreased body fat, we crossed the gpa-8-null mutants into a

transgenic line bearing the adipocyte triglyceride lipase (atgl-1)

promoter fused to GFP. ATGL-1 is a rate-limiting enzyme that

generates free fatty acids from stored triglycerides in eukary-

otes, which are then oxidized in the mitochondria for the produc-

tion of energy (Salway, 1999; Zimmermann et al., 2004). We pre-

viously showed that C. elegans atgl-1 is expressed in the

intestine and is transcriptionally induced in response to neural

signals that stimulate fat loss (Noble et al., 2013). Although

atgl-1-null mutants are not viable, RNAi-mediated inactivation

of atgl-1 leads to increased fat retention in adults (Noble et al.,

2013). Relative to wild-type animals, gpa-8 mutants have an
a-8 mutants fixed and stained with oil Red O (upper panels). Fat content was

ild-type animals grown on vector RNAi ± SEM (lower panels; n = 12). *p < 0.05

lue arrowheads indicate expression in AQR and PQR neurons, and the white

ntral.

ed and stained with oil Red O (upper panels). For each transgenic line bearing

ansgenic animals (+) are shown. Relative to non-transgenic controls (gray bars),

he endogenous gpa-8 and the heterologous gcy-36 promoters restore body fat

f body fat in wild-type animals ± SEM (lower panels; n = 20–24). *p < 0.05 and

ctivation of gpa-8. For each transgenic line bearing gpa-8 antisense using the

own. Relative to non-transgenic controls (black bars), transgenic animals (gray

recapitulate the decreased body fat seen in gpa-8mutants. Data are expressed

nd ***p < 0.001 by Student’s t test.
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approximately 25% induction of atgl-1 expression in the intes-

tine (Figure 1C). In addition, RNAi-mediated inactivation of

atgl-1 abrogated the reduced body fat of gpa-8 mutants (Fig-

ure 1D). Our results indicate that increased fat utilization via in-

duction of triglyceride hydrolysis underlies the reduced body

fat of gpa-8 mutants.

GPA-8 is expressed in four neurons: AQR, PQR, and the bilat-

erally symmetric URX pair (Figure 1E; Jansen et al., 1999). In gpa-

8-null mutants, we restored gpa-8 cDNA to the AQR, PQR, and

URX neurons using the endogenous gpa-8 promoter and the het-

erologous gcy-36 promoter that confers expression in the same

neurons. Relative to gpa-8mutants and non-transgenic animals,

both promoters conferred near-complete restoration of body fat

(Figure 1F). Previous reports have shown that the URX pair alone

is sufficient for the behaviors this quartet of neurons regulates

(Coates and de Bono, 2002; Zimmer et al., 2009). To test

for necessity of GPA-8 function in the URX neurons, we gener-

ated transgenic lines bearing antisense-mediated inhibition of

gpa-8, under the control of the gcy-36 (AQR, PQR, and URX)

and flp-8 (URX and occasional expression in AUA and PVM) pro-

moters. Inactivation of gpa-8 in the URX neurons recapitulated

the gpa-8 mutant phenotype to the same extent as its inactiva-

tion in AQR, PQR, and URX neurons (Figure 1G). Thus, GPA-8

function in the URX neurons is necessary and sufficient to main-

tain normal body fat reserves.

cGMP Signaling in the Body Cavity Neurons Regulates
the Extent of Body Fat Loss
The body cavity neurons are oxygen sensors in which two genes

play dominant roles (Gray et al., 2004; Zimmer et al., 2009). First,

the soluble guanylate cyclase GCY-36 expressed in the AQR,

PQR, and URX neurons binds molecular oxygen to generate

cGMP. Second, the cyclic nucleotide-gated (CNG) channel

TAX-4 activates URX via Ca2+ influx. Imaging and behavioral

studies have shown that GCY-36 and TAX-4 are key regulators

of cGMP-mediated URX function (Cheung et al., 2004, 2005;

Zimmer et al., 2009). An additional guanylate cyclase called

GCY-35 is thought to function as a heterodimer with GCY-36

in the body cavity neurons; however, it is also expressed in

several other neuron pairs. gcy-35- and gcy-36-null mutants

have similar defects in oxygen sensation (Gray et al., 2004),

and we found that gcy-35 mutants did not have altered body

fat (data not shown).

To test whether cGMP-signaling genes that control oxygen

sensing in URX neurons also regulate body fat, we generated

gpa-8;gcy-36 and gpa-8;tax-4 mutants. Although the gcy-36

single mutants did not show an appreciable difference in body

fat, they fully suppressed the body fat loss of the gpa-8mutants,

and gpa-8;gcy-36 double mutants retained body fat to the same

extent as gcy-36 single mutants (Figure 2A). tax-4 mutants re-

tained significantly greater body fat than wild-type animals

(�125% of wild-type; Figure 2A), and gpa-8;tax-4 double mu-

tants retained body fat to the same extent as tax-4 single mu-

tants, fully suppressing the decreased body fat of gpa-8mutants

(Figure 2A). The genetic epistasis experiments indicate that

GPA-8 and the URX-cGMP-signaling genes have opposing ef-

fects on body fat and that GCY-36 and TAX-4 are required

to manifest the GPA-8 phenotype. To examine the effect of
4 Cell Reports 14, 1–14, February 23, 2016 ª2016 The Authors

CELREP 243
cGMP on body fat directly, we treated worms with a non-hydro-

lyzable analog of cGMP, 8-(para-chlorophenylthio)-guanosine

3050-cyclic monophosphate (8-pCPT-cGMP). In wild-type ani-

mals, exogenous treatment of 8-pCPT-cGMP led to decreased

body fat, resembling gpa-8 mutants (Figure 2B). Exogenous

treatment of 8-pCPT-cGMP also led to decreased body fat in

gcy-36 and gpa-8;gcy-36 mutants because the treatment by-

passes GCY-36, but not gpa-8 mutants (Figure 2B). Finally,

tax-4 and gpa-8;tax-4 mutants fully suppressed the fat loss

induced by 8-pCPT-cGMP, suggesting that the observed

cGMP effects on body fat require TAX-4 function (Figure 2B).

tax-4 is also expressed in other sensory neurons in addition to

the body cavity neurons (Coburn and Bargmann, 1996); there-

fore, we wanted to measure the extent to which rescuing tax-4

in the oxygen-sensing neurons restored body fat levels. In

tax-4 mutants, we re-expressed tax-4 cDNA under the control

of the gcy-36 promoter. We found that, relative to tax-4mutants

and non-transgenic controls, transgenic animals lost the addi-

tional body fat and resembled wild-type animals (Figure 2C).

Together, our data indicate that GPA-8 functions in a discrete

signaling pathwaywith GCY-36 and TAX-4 in the URX neurons to

regulate body fat. We find that increased cGMP signaling de-

creases body fat, whereas blocking cGMP signaling retains or in-

creases body fat. Thus, cGMP functions as an instructive second

messenger in theURX neurons for the long-range control of body

fat. In these neurons, GCY-36 is the major source of cGMP and

TAX-4 is its effector. Because gpa-8 mutants have decreased

body fat that is blocked by the absence of gcy-36 and tax-4,

our model suggests that GPA-8 must normally oppose the func-

tions of GCY-36 and TAX-4 (Figure 2D).

Oxygen Sensing via the Body Cavity Neurons Controls
the Extent of Fat Mobilization in the Periphery
The genetic evidence suggested that gpa-8 opposes the effects

of the oxygen-sensing genes in URX neurons. In the laboratory,

C. elegans feed on living bacteria whose respiration drops the

local ambient concentration of oxygen. Under these settings,

increasing oxygen concentrations correlate with decreasing

food availability. To measure the physiological consequences

of food absence and oxygen sensing, we embarked on a series

of experiments in which we measured the extent of fat loss upon

changing the animals’ exposure to oxygen. We first ascertained

that the hypoxia-sensing pathway genes did not alter body fat

(Figure S2A). Additionally, evidence from the literature suggests

that C. elegans does not experience appreciable hypoxia until

ambient oxygen levels reach 3% (Van Voorhies and Ward,

2000). As seen in most organisms, fasting induces a drop in

body fat in C. elegans because triglycerides are utilized for en-

ergy production in the absence of food supplies (Jo et al.,

2009). A fasting time course of wild-type animals revealed that,

within a 2- or 3-hr window, adults at atmospheric oxygen

(21%) lose nearly 70%–80% of their body fat (Figure S2B). To

measure the extent to which fat loss is dependent on environ-

mental oxygen exposure, we compared the fasting-induced fat

loss of wild-type animals exposed to 21% versus 10% oxygen

(Figure 3A). We chose 10% oxygen because behavioral and im-

aging studies have shown that URX neurons are not active at this

concentration (Zimmer et al., 2009). Well-fed wild-type animals
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Figure 2. cGMP Signaling in the Body Cavity Neurons Regulates the Extent of Body Fat Loss

(A) Representative images are shown of animals fixed and stainedwith oil RedO (upper panels). Fat content was quantified for each genotype and is expressed as

a percentage of wild-type animals ± SEM (lower panels; n = 20–22). *p < 0.05; **p < 0.01; n.s., not significant by one-way ANOVA.

(B) For each genotype, animals were grown on plates containing either vehicle (10% DMSO) or 200 mM 8-(para-chlorophenylthio)-guanosine 3050-cyclic
monophosphate (8-pCPT-cGMP). Fat content was quantified for each genotype and is expressed as a percentage of vehicle-treated wild-type animals ± SEM

(n = 16–21). ***p < 0.001; n.s., not significant by two-way ANOVA.

(C) Representative images are shown of wild-type animals and tax-4 mutants fixed and stained with oil Red O (upper panels). For each transgenic line bearing

tax-4 expression using the indicated promoter, non-transgenic animals (�) and transgenic animals (+) are shown. Relative to non-transgenic controls (gray bars),

transgenic animals (black bars) bearing the tax-4 transgene under the control of the heterologous gcy-36 promoter restore body fat content to wild-type. Data are

expressed as a percentage of body fat in wild-type animals ± SEM (lower panels; n = 20–22). *p < 0.05 and **p < 0.01 by Student’s t test.

(D) Schematic depiction of a signaling pathway in the URX neurons in which GPA-8 opposes the functions of GCY-36 and TAX-4 to regulate body fat via the

second messenger cGMP.
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on either live or heat-killed bacterial lawns did not have an appre-

ciable difference in body fat when exposed to 21% and 10% ox-

ygen for the same duration (Figures S2C and S2D). Upon food

deprivation and short-term fasting, animals exposed to 10% ox-

ygen over the 2.5-hr window retained significantly greater body

fat (�45% of well-fed controls) compared to animals exposed

to 21% oxygen (�20% of well-fed controls; Figure 3B). The in-

crease in fat retention at 10%was not accompanied by a change

in locomotion or other discernable behavioral differences (E.W.

and S. Srinivasan, unpublished data). We have previously shown

that a substantial loss of body fat requires the transcriptional in-

duction of the atgl-1 lipase (Noble et al., 2013; Srinivasan, 2015).

In keeping with the differential effects of oxygen exposure on

body fat loss, we found that, upon fasting, the extent to which

atgl-1 is transcriptionally induced is dependent upon exposure
CELREP
to oxygen. Animals exposed to 21% oxygen showed a signifi-

cant induction of the atgl-1 reporter, whereas animals exposed

to 10% oxygen did not (Figure 3C). Thus, food absence and

increased oxygen availability induce peripheral lipid mobilization

as judged by body fat levels and atgl-1 induction.

The URX neurons are activated by 21% oxygen via the actions

of GCY-36 and TAX-4 and silenced at 10% oxygen. To measure

the extent to which the effect of oxygen on fat loss was depen-

dent on neural oxygen sensing via URX, we subjected mutants

of the URX-cGMP-signaling pathway to the oxygen-dependent

fat loss experimental paradigm. Across all genotypes, short-

term fasting induced fat loss at both 21% and 10% (Figure 3D).

However, the extent to which body fat was mobilized at the

two oxygen concentrations varied between mutants. Relative

to wild-type animals, gcy-36 and tax-4 mutants showed a
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Figure 3. Oxygen Sensing via the Body Cavity Neurons Controls the Extent of Fat Mobilization in the Periphery

(A) Schematic depiction of the oxygen-dependent fat loss assay. L1wormswere seeded and grown to adulthood on food. Day 1 adults were washed off food over

a period of 30 min. Worms were then seeded onto plates without food. Worms were then subjected to a fasting period at either 21% or 10% oxygen for an

additional 2.5 hr. At the end of the fasting period, worms were fixed and stained with oil Red O.

(B) Wild-type worms were subjected to the fasting assay described in (A). Representative images are shown of fed or fasted wild-type worms, subjected to

different O2 concentrations, fixed, and stained with oil Red O (upper panels). Data are expressed as a percentage of body fat in wild-type fed controls ± SEM

(lower panels; n = 20–21). ***p < 0.001 by one-way ANOVA.

(C) atgl-1::GFPworms were subjected to the fasting assay described in (A). The fluorescence intensity of atgl-1 expression was quantified and is expressed as a

percentage of wild-type fed controls ± SEM (n = 10–15). ***p < 0.001 by one-way ANOVA.

(D) Worms of the indicated genotypes were subjected to the fasting assay described in (A). Fat content was quantified for each genotype and condition. Data are

expressed as a percentage of body fat in wild-type fed controls ± SEM (n = 12–25). Each genotype was compared to wild-type by one-way ANOVA. Different

(legend continued on next page)
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significant suppression of fasting-induced fat loss at 21% (Fig-

ure 3D). On the other hand, the extent of fat loss at 10% oxygen

remained similar to that of wild-type animals in both mutants.

Thus, the fat loss elicited by 21% oxygen is abrogated in the

gcy-36 and tax-4 mutants, suggesting that activation of URX

neurons via these genes is essential for the stimulation of fat

loss. Our genetic epistasis experiments had already indicated

that GPA-8 opposes the functions of GCY-36 and TAX-4 (Fig-

ure 2A). In the oxygen-dependent fasting paradigm, we noted

an interesting phenotype in the gpa-8 mutants: although fasting

at 21% oxygen elicited fat loss indistinguishably from wild-type

animals, they had significantly greater fat loss at 10% oxygen

compared to wild-type, gcy-36, and tax-4 animals (Figure 3D).

In effect, gpa-8 animals fasted at 10% oxygen resembled those

fasted at 21%, again revealing that gpa-8 mutants oppose the

gcy-36 and tax-4 mutant phenotypes (Figures 2A, 2D, and 3D).

The enhanced fasting-induced fat loss of gpa-8 animals at

10% oxygen was fully suppressed in the gpa-8;gcy-36 and

gpa-8;tax-4 mutants (Figure 3D); thus, the URX responses at

10% and 21% oxygen are both integrated via cGMP signaling.

This in turn suggested that, in contrast to wild-type animals,

gpa-8 mutants raised on heat-killed bacteria would show a dif-

ferential response at 21% versus 10% oxygen, because in the

gpa-8mutants fasted at 21%oxygen, gcy-36would be activated

in two ways: first by de-repression via loss of gpa-8 and second

via activation by 21% oxygen. Accordingly, we found that gpa-8

mutants exposed to 21% and 10% oxygen on heat-killed bacte-

rial lawns had decreased body fat at 21% relative to 10%oxygen

(Figure S3).

We thus identify two components for the differential modula-

tion of body fat loss by oxygen sensing in URX neurons. One,

activation of URX at 21% oxygen via GCY-36 and TAX-4

signaling stimulates fat loss, and gcy-36 and tax-4mutants retain

more body fat at 21% oxygen than wild-type. This is in keeping

with the previously observed enhanced behavioral effects of

URX at 21% oxygen. Two, silencing of URX at 10% oxygen via

GPA-8 signaling serves to minimize fat loss; therefore, gpa-8

mutants have enhanced fat loss at 10%. This suggests a role

for GPA-8 in keeping URX inactive at 10% oxygen.

Internal Fat Reservoirs Modulate the Resting State of
URX Neurons via GPA-8 Signaling
To directly study the effects of GPA-8 signaling on URX neuron

function, we turned to Ca2+ imaging in living worms. We used

the genetically encoded calcium indicator GCaMP5k as a re-

porter of URX activity because it has been optimized for greater

sensitivity and threshold activation properties (Akerboom et al.,

2012). Wild-type animals bearing the GCaMP5k transgene ex-

pressed under the URX-specific promoter flp-8 were overtly

normal and showed robust calcium influx at 21% oxygen (Fig-

ures 4A and 4D), as previously described (Schrödel et al.,

2013). We observed two properties of URX activation in gpa-8
letters indicate statistical significance. Letters shared in common among groups i

different from wild-type fed animals. Groups labeled with ‘‘b’’ (p < 0.01) and ‘‘c’’ (p

wild-type. Groups labeled with ‘‘d’’ (p < 0.001) and ‘‘e’’ (p < 0.01) represent signi

See also Figures S2 and S3.
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mutants crossed into the flp-8::GCaMP5k transgenic line. First,

at 21% oxygen, there was an approximately 30% decrease in

maximal activation of URX neurons in the gpa-8mutants (Figures

4B, 4E, and 4G). gcy-36mutants did not show URX activation at

21%oxygen (Figures 4C and 4F), consistent with publishedwork

using GCaMP 3.0 (Zimmer et al., 2009). Second, at 10% oxygen,

we observed a nearly 2-fold increase in baseline (F0) fluores-

cence values in gpa-8mutants relative to wild-type animals (Fig-

ure 4H), whereas gcy-36 mutants did not show a difference in

baseline (F0) fluorescence (Figure 4H) or flp-8 promoter activity

at 10% oxygen (Figure 4I). Importantly, the increase in baseline

fluorescence of gpa-8 mutants at 10% oxygen was not a func-

tion of a general increase in flp-8 promoter activity at either

21% or 10% oxygen (Figures S4A and 4I). A scatterplot of

maximal URX responses (DF/F values; 21% oxygen) versus

baseline fluorescence (F0; 10% oxygen) values reveals the effect

of loss of GPA-8 on URX function: gpa-8mutants have increased

Ca2+ levels at 10% oxygen, thus elevating the resting state of

URX (Figures S4B–S4D). When measuring URX peak responses

to the oxygen upshift in absolute GCaMP5k fluorescence levels,

no significant difference between wild-type and gpa-8 was

observed (Figure 4J); the major effect of GPA-8 therefore lies in

controlling Ca2+ levels at 10% oxygen. The URX peak response

to the oxygen upshift in absolute GCaMP5k fluorescence levels

was decreased in gcy-36 animals compared to wild-type ani-

mals (Figure 4J). The consequence of the increased URX basal

properties in gpa-8mutants is to make URX neurons more active

at 10%, which in turn dampens maximal responsiveness at 21%

oxygen. Because GPA-8 is not involved in the direct sensing of

oxygen or in cGMP synthesis, its major effect on URX function

is modulatory: it limits baseline Ca2+ and thus ensures that

URX is held inactive at 10% oxygen.

In seeking a greater understanding of GPA-8 function, three

lines of evidence led us to reason that the URX neurons may

detect an internal homeostatic signal. First, resting-state Ca2+

levels in URX neurons were increased in gpa-8 mutants, resem-

bling a tonic increase in neuronal activity. Second, although

gpa-8 mutants regulate body fat via resting-state Ca2+ levels in

URX at 10% oxygen (Figures 3D and 4H), they do not appre-

ciably alter the physiological response to 21% oxygen (Fig-

ure 3D). Third, the positioning of the URX neurons within the

body cavity and the coelomic fluid suggests that they may sense

the internal milieu (http://www.wormatlas.org). Thus, we con-

ducted experiments to test whether the role of GPA-8 in keeping

URX in a state of diminished activation stems from sensing inter-

nal fat reserves.

We decreased body fat levels in the intestine by RNAi-medi-

ated inactivation of each of two genes: acetyl CoA carboxylase

(ACC/pod-2) and palmitic acid elongase elo-2 in adult

C. elegans. ACC/pod-2 is an enzyme that generates malonyl

CoA, which is the precursor to fatty acid synthesis in eukaryotes

(Salway, 1999). elo-2 encodes an enzyme that converts C16:0
ndicate no significant difference. Groups labeled with ‘‘a’’ were not significantly

< 0.001) represent significant differences within the fed condition compared to

ficant differences within the fasted conditions compared to wild-type.
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Figure 4. GPA-8 Controls the Resting-State Ca2+ Levels in URX Neurons

(A–F) Measurements of neuronal activity by Ca2+ imaging of URX neurons for each genotype. The number of animals used for each condition is shown in the

figure. We conducted Ca2+ imaging experiments in URX neurons in living wild-type, gpa-8, and gcy-36mutant animals bearingGCaMP5k under the control of the

flp-8 promoter. Oxygen concentrations in the microfluidic chamber were 10% and 21% as indicated. (A–C) For each genotype, black traces show the average

percent change of GCaMP5k fluorescence (DF/F0) and gray shading indicates SEM. (D–F) Individual URX responses are shown for each genotype; each row

represents one animal.

(G) Maximum DF/F0 values are shown for individual animals in wild-type, gpa-8, and gcy-36 mutants. Bars indicate the average value within each genotype.

***p < 0.001 by one-way ANOVA.

(H) Individual baseline fluorescence (F0) values at 10%oxygen are shown for individual animals in wild-type, gpa-8, and gcy-36mutants. Bars indicate themedian

value within each genotype. *p < 0.05; n.s., not significant by Kruskal-Wallis test.

(I) We imaged mCherry fluorescence in wild-type, gpa-8, and gcy-36 animals expressing both GCaMP5k and mCherry under the control of the flp-8 promoter.

Images were taken in animals exposed to 10% oxygen. For each genotype, the fluorescence intensity was imaged at the same exposure, determined to be within

the linear range. Fluorescence intensity was quantified and expressed as an average ± SEM (n = 21–27). n.s., not significant by one-way ANOVA.

(J) The background-subtracted maximum fluorescence (max FL) at 21% oxygen is shown for each animal in the wild-type, gpa-8, and gcy-36 backgrounds. Bars

indicate the average value within each genotype. ***p < 0.001; n.s., not significant by one-way ANOVA.

See also Figure S4.
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fatty acids toC18:0 fatty acids (Kniazeva et al., 2003). Thus, ACC/

pod-2 and elo-2 inactivation each inhibit fat synthesis, and pod-

2-null mutants arrest at an early larval stage. ACC/pod-2 and

elo-2 are only expressed in the C. elegans intestine (Nomura

et al., 2010; Figure S5A), and we found that RNAi-mediated inac-

tivation of pod-2 (post-development; after the L4 stage) or elo-2

leads to a decrease in body fat by greater than 80% compared

to control-treated worms (Figure S5B). We did not observe any

additional physical defects or differences in egg production at

the time of imaging in pod-2- or elo-2-inactivated animals (Fig-
8 Cell Reports 14, 1–14, February 23, 2016 ª2016 The Authors
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ures S5C and S5D). We measured the effect of this substantial

decrease in body fat in the intestine on URX activation. In

response to 21% oxygen, we observed a decrease in maximal

activation (DF/F0) of URX neurons (Figures 5A, 5B, 5E, 5F, 5I,

5J, 6A, S6A, S6C, and S6E). Next, in response to 10% oxygen,

we observed a greater than 2-fold increase in baseline (F0) fluo-

rescence values in both ACC/pod-2- and elo-2-inactivated ani-

mals relative to wild-type controls (Figures 6B, S6A, S6C, and

S6E). The increase in resting-state Ca2+ levels at 10% oxygen

was not a consequence of increased promoter activity in URX
7



0

−100

100

200

300

400

0 20 40 60 80 100 120
Time (seconds)

gpa-8 + vector RNAi
10% 21% 10%

n=52
0

−100

100

200

300

400

0 20 40 60 80 100 120
Time (seconds)

gpa-8 + vector RNAi

0

−100

100

200

300

400

0 20 40 60 80 100 120
Time (seconds)

wild-type + vector RNAi

0 20 40 60 80 100 120
Time (seconds)

0

−100

100

200

300

400
wild-type + vector RNAi

n=56

10% 21% 10%
A B C D

10% 21% 10%
gpa-8 + pod-2 RNAi

n=34
0

−100

100

200

300

400

0 20 40 60 80 100 120
Time (seconds)

0

−100

100

200

300

400

0 20 40 60 80 100 120
Time (seconds)

wild-type + pod-2 RNAi
10% 21% 10%

n=48
0

−100

100

200

300

400

0 20 40 60 80 100 120
Time (seconds)

wild-type + pod-2 RNAi gpa-8 + pod-2 RNAi

0

−100

100

200

300

400

0 20 40 60 80 100 120
Time (seconds)

E F G H

0

−100

100

200

300

400

0 20 40 60 80 100 120
Time (seconds)

wild-type + elo-2 RNAi
10% 21% 10%

n=47

gpa-8 + elo-2 RNAi

0

−100

100

200

300

400

0 20 40 60 80 100 120
Time (seconds)

10% 21% 10%

n=34

gpa-8 + elo-2 RNAi

0

−100

100

200

300

400

0 20 40 60 80 100 120
Time (seconds)

wild-type + elo-2 RNAiI J K L

0

−100

100

200

300

400

0 20 40 60 80 100 120
Time (seconds)

Figure 5. The Activation of URX Neurons Is Modulated by Internal Fat Reserves in a GPA-8-Dependent Manner
We conducted Ca2+ imaging in vector, pod-2, or elo-2 RNAi-treated wild-type and gpa-8 mutant animals bearing GCaMP5k under the control of the flp-8

promoter. Oxygen concentrations in the microfluidic chamber were 10% and 21% as indicated. The number of animals for each condition is given in the figure.

(A–D) Measurements of neuronal activity by Ca2+ imaging of URX neurons for wild-type (A and B) and gpa-8 (C and D) animals treated with vector control RNAi.

(A and C) Black traces show the average percent change of GCaMP5k fluorescence (DF/F0), and gray shading indicates SEM. Average DF/F0 at the depicted

oxygen concentrations is shown. (B and D) Individual URX responses are shown; each row represents one animal.

(E–H) Measurements of neuronal activity by Ca2+ imaging of URX neurons for wild-type (E and F) and gpa-8 (G and H) animals treated with pod-2 RNAi. (E and G)

Black traces show the average percent change of GCaMP5k fluorescence (DF/F0), and gray shading indicates SEM. Average DF/F0 at the depicted oxygen

concentrations is shown. (F and H) Individual URX responses are shown; each row represents one animal.

(I–L) Measurements of neuronal activity by Ca2+ imaging of URX neurons for wild-type (I and J) and gpa-8 (K and L) animals treated with elo-2RNAi. (I and K) Black

traces show the average percent change of GCaMP5k fluorescence (DF/F0), and gray shading indicates SEM. Average DF/F0 at the depicted oxygen

concentrations is shown. (J and L) Individual URX responses are shown; each row represents one animal.

See also Figure S5.
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neurons; co-expressed flp-8::mCherry was not appreciably

different across the experimental conditions (Figure 6C). Our

evidence indicates that a substantial drop in body fat reserves

in the intestine has the capacity to modify Ca2+-regulated URX

activation properties. The decrease in maximal fluorescence (at

21%) and concomitant increase in baseline fluorescence

(at 10%) seen with inactivation of ACC/pod-2 or elo-2 strongly

resembled the URX response of gpa-8 mutants (Figures 4B, 4E,

4G, and 4H). Therefore, we measured URX responses upon fat

depletion in the gpa-8 mutants and found that inactivation of

either ACC/pod-2 or elo-2 in the gpa-8 mutant background did

not lead to an additive effect on URX activation (Figures 5C, 5D,

5G, 5H, 5K, 5L, S6B, S6D, and S6F). When measuring the URX
CELREP
response to the oxygen upshift via absolute GCaMP5k fluores-

cence levels, no significant differences across the experimental

conditions were observed (Figure 6D). Together, these experi-

ments indicate that the increased resting-state Ca2+ levels in

URX neurons elicited by depleting intestinal fat reserves occurs

via GPA-8 signaling. Thus, GPA-8 signaling serves to limit the

tonic activity of URX neurons in the ‘‘off’’ state when the animals

are exposed to 10% oxygen.

DISCUSSION

Here, we identify the C. elegans body cavity neurons as

homeostatic sensors and integrators of food availability and
Cell Reports 14, 1–14, February 23, 2016 ª2016 The Authors 9
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Figure 6. The Resting-State Ca2+ Levels in

URX Neurons Are Modulated by Internal

Fat Reserves in aGPA-8-DependentManner

(A) Individual maximumDF/F0 values are shown for

each genotype and condition, as denoted in the

figure. Bars indicate the average value within each

genotype. **p < 0.01; ***p < 0.001; n.s., not sig-

nificant by two-way ANOVA.

(B) Individual baseline fluorescence (F0) values at

10% oxygen are shown for each genotype and

condition. Bars indicate the median value within

each genotype. **p < 0.01; n.s., not significant by

Kruskal-Wallis.

(C) mCherry fluorescence intensity in RNAi-treated

animals expressing both GCaMP5k and mCherry

under the controlof theflp-8promoter. Imageswere

taken in animals exposed to 10%oxygen. For each

genotype, the fluorescence intensity was imaged at

the same exposure, determined to be within the

linear range. Fluorescence intensity was quantified

and expressed as an average ± SEM (n = 21–27).

n.s., not significant by two-way ANOVA.

(D) The background-subtracted maximum fluo-

rescence (max FL) at 21% oxygen is shown for

each genotype and condition. Bars indicate the

average value within each genotype. n.s., not

significant by one-way ANOVA.

See also Figure S6.
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body fat status (Figure 7). Our evidence points to a model in

which oxygen sensation via the URX neurons functions to stim-

ulate body fat loss. Fat stores, in turn, regulate the tonic activity

of URX neurons. The interoception of fat reserves by the body

cavity neurons thus performs a critical function: it ensures that

a neural signal to stimulate fat loss is deployed only when there

are adequate internal fat reserves (modeled in Figure 7A). Our

model predicts that the activity state of URX neurons reflects

the net balance between oxygen sensation and internal fat

reserves (Figures 7B–7E). In the fat-replete state (Figure 7B),

an internal nutrient sufficiency signal activates GPA-8, leading

to the inhibition of GCY-36 and cGMP production, which re-

duces tonic activity of URX. When animals are exposed to low

oxygen (�10%) and food is present, there is no evoked

response. In this setting, net URX activity is off and fat loss via

ATGL-1 activation is minimal. As food supplies dwindle (Fig-

ure 7C), GCY-36 becomes maximally activated by the increase

in environmental oxygen to 21%. Active GCY-36 increases

cGMP synthesis, TAX-4-mediated Ca2+ influx, and URX activity,

ultimately stimulating body fat loss via an unknown neuroendo-

crine signal. While food supplies are still low and as fat stores

become depleted (Figure 7D), the internal nutrient sufficiency

signal is lost and GPA-8 is no longer kept active. This leads to

de-repression of GCY-36 and increased tonic activity of URX.

In this physiological setting, although food withdrawal and expo-

sure to 21%oxygen would still activate GCY-36, the net maximal

activation of URX is diminished because of its already-increased

tonic state. Diminished URX activation would then be predicted

to minimize the release of a fat-loss-stimulating signal. Upon re-

encountering food (Figure 7E), URX activity is predicted to

remain low until fat stores are replete again and the nutrient

sufficiency signal is restored. The proposed homeostatic loop
10 Cell Reports 14, 1–14, February 23, 2016 ª2016 The Authors
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defines a novel interoceptive mechanism for the body cavity

neurons that integrates external and internal nutrient status.

The utilization of fat for the production of energy employs a

cascade of cell-autonomous biochemical reactions that require

molecular oxygen in the mitochondria (Salway, 1999). Our data

suggest that neural perception of oxygen availability is an addi-

tional, previously unknown feature underlying the neural control

of body fat. Oxygen sensation under normoxia in the mammalian

nervous system has been documented to regulate peripheral

metabolism (Frappell et al., 1992); however, the mechanisms

underlying this effect remain obscure. InC. elegans, the intestine

is not directly innervated; thus, information relay from the nervous

system to metabolic sites must involve endocrine effects. The

neuroendocrine mechanisms by which URX neurons communi-

cate information to the intestine are not yet known.

Visualization of URX activity via Ca2+ imaging unexpectedly re-

vealed that the extent of body fat reserves themselves alters

URX function in a GPA-8-dependent manner. URX neurons are

known to be sensors of environmental oxygen (Persson et al.,

2009; Busch et al., 2012) and transducers of 5-HT-encoded

food presence (Noble et al., 2013). We propose that the direct

or indirect perception of internal body fat reserves via GPA-8

signaling is another property of the body cavity neurons.

Changes in fat reserves alter the tonic activation state of URX

neurons, in keeping with the narrow dynamic range of body fat

homeostasis. Thus, our experiments reveal a novel facet of

neuronal function in this context: integration between the sensa-

tion of oxygen, an external sensory cue, and the perception of

body fat, an internal sensory cue. These disparate modalities

are integrated via the actions of a cGMP-mediated signal trans-

duction pathway in the URX interoceptive neurons, whose acti-

vation status is a measure of the counterbalance between
7
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Figure 7. Schematic Depiction of a Homeostatic Neuroendocrine Axis that Integrates External and Internal Nutrient Status

(A) We have identified a neuroendocrine axis that operates to communicate oxygen availability to regulate body fat stores in the intestine, themajor metabolic and

fat-regulatory organ for C. elegans. A feedback signal from the intestine relays fat status to the URX body cavity neurons by modulating their tonic activity. This

homeostatic loop ensures that neural stimulation of fat mobilization only occurs when there are sufficient fat reserves.

(B) In the fat-replete state, an internal nutrient sufficiency signal activates GPA-8 (depicted in green). This leads to the inhibition of GCY-36 and cGMP production,

keeping the tonic activity of URX neurons low. In the presence of food, when animals are exposed to low oxygen (�10%), there is no evoked response. In this

setting, net URX activity is off and fat mobilization is minimal (dotted red line).

(C) As food supplies dwindle and ambient oxygen levels rise to 21%, GCY-36 becomes maximally activated and generates cGMP, which in turn activates the

cyclic nucleotide gated channel TAX-4. This allows Ca2+ influx and stimulates the evoked response of URX neurons. In this setting, net URX activity is high,

leading to the release of a signal that stimulates body fat loss (depicted in red).

(D) As fat stores become depleted in the continued absence of food supplies, at 21% oxygen, the internal nutrient sufficiency signal is lost and GPA-8 is no longer

kept active (dotted green line). This leads to de-repression of GCY-36 and increases the tonic activity of URX. Although 21% oxygen would still activate GCY-36,

the net activity of URX is diminished because of its already-increased tonic state, thus slowly minimizing the release of a fat loss signal.

(E) Upon re-encountering food in the fat-depleted state, net URX activity would be predicted to remain low until fat stores are replete again and the nutrient

sufficiency signal is restored.
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oxygen availability and fat reserves. Although there is currently

scant evidence in the literature for the modulation of soluble

guanylyl cyclases by G proteins, in C. elegans, the ASJ light-

sensing neurons utilize a G-protein-dependent cGMP transduc-

tion pathway that is independent of phosphodiesterase activity

(Liu et al., 2010). Our results point to a potential new mode of ac-

tion for gustducin/GPA-8 in cellular signal transduction that

elicits robust effects on whole-body physiology.

There are two possible models for the integration of internal

metabolic state information in the nervous system. First, changes
CELREP
in internal metabolic state may alter the ability of neurons to

perceive external sensory information by directly modulating

the magnitude of the maximal response elicited by a given sen-

sory cue. This model implies that the external sensory receptors

overlapwith those of internal state sensing and that each function

is dependent on the other. Alternatively, internal state sensing

may function to modify the tonic or basal properties of neurons

while retaining their full sensory capacity. A key aspect support-

ing this alternatemodel is that thedynamic rangeof internalmeta-

bolic parameters is much narrower than the many orders of
Cell Reports 14, 1–14, February 23, 2016 ª2016 The Authors 11
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magnitude typically processed by external sensory receptors

(Axel, 2005). In this scenario, the cellularmachinery used for inter-

nal state sensing is distinct from that of external sensing and inte-

gration between external and internal states occurs downstream

of receptors. In either model, the result of integration would lead

to a metabolic-state-dependent modulation of neuronal activity.

Our data favor the secondmodel.We propose that a nutrient suf-

ficiency signal viaGPA-8 regulates the tonic activation of theURX

neurons,whereasoxygen sensing viaGCY-36 regulates the stim-

ulated activation of URX neurons. In support of ourmodel, obser-

vations of animal behavior and physiology suggest that sensory

functions are enhanced or diminished by, rather than fully depen-

dent upon, internal state.

EXPERIMENTAL PROCEDURES

Animal Maintenance and Strains

All animalswere cultured asdescribed (Brenner, 1974). N2Bristol, obtained from

the Caenorhabditis Genetic Center (CGC), was used as the reference wild-type

strain. The following mutant strains were used: NL1147 gpa-10(pk36)V;

DA1084 egl-30(ad806)I; CX2205 odr-3(n2150)V; NL793 gpa-9(pk438)V;

NL1137 gpa-5(pk376)X; NL334 gpa-2(pk16)V; NL2330 gpa-13(pk1270)V;

NL795 gpa-7(pk610)IV; NL332 gpa-1(pk15)V; RB1800 gpa-17(ok2334)III;

NL797 gpa-15(pk477)I; DG1856 goa-1(sa734)I; NL1146 gpa-6(pk480)X; NL787

gpa-11(pk349)II; NL790 gpa-4(pk381)IV; NL594 gpa-12(pk322)X; NL788 gpa-

14(pk342)I; NL335 gpa-3(pk35)V; NL1142 gpa-8(pk345)V; KQ1384 tax-4(p678)

III; AX1297 gcy-36(db66)X; SSR866 gpa-8(pk345);tax-4(p678); SSR1047 gpa-

8(pk345);gcy-36(db66); FK229 egl-4(ks61)IV; and SSR915 gpa-8(pk345);egl-

4(ks61). The following transgenic strains were generated: SSR896 atgl-1::GFP;

SSR1080 gpa-8(pk345);atgl-1::GFP; SSR1128 tax-4(p678);Pgcy-36:tax-4::GFP;

SSR634 gpa-8(pk345);Pgpa-8:gpa-8::GFP; SSR1008 gpa-8(pk345);Pgpa-

8:gpa-8::GFP; SSR1011 gpa-8(pk345);Pgcy-36:gpa-8::GFP; SSR688 Pgcy-

36::gpa-8SAS; SSR691 Pflp-8::gpa-8SAS; SSR1070 N2;flp-8::mCherry;

flp-8::GCaMP5k; SSR1066 gpa-8(pk345);flp-8::mCherry;flp-8::GCaMP5k; and

SSR1218 gcy-36(db66);flp-8::mCherry;flp-8::GCaMP5k. All experiments were

performed on day 1 adults.

Cloning and Transgenic Strain Construction

Promoters and genes were cloned using standard PCR techniques from N2

Bristol worm lysates and cloned using Gateway Technology (Life Technolo-

gies). Promoter lengths were determined based on functional rescue and are

available upon request. All rescue plasmids were generated using polycis-

tronic GFP. Transgenic rescue strains were constructed by microinjection

into the C. elegans germline followed by visual selection of transgenic animals

under fluorescence. For the microinjections, 5–10 ng/ml of the desired plasmid

was injected with 25 ng/ml of an unc-122::GFP coinjection marker and 65–

70 ng/ml of an empty vector to maintain a total injection mix concentration of

100 ng/ml. In each case, 10–20 stable transgenic lines were generated. Two

lines were selected for experimentation based on consistency of expression

and transmission rate. For GCaMP5k transgenic animals, 5 ng/ml of Pflp-

8::GCaMP5kwas injected with 2 ng/ml of aPflp-8::mCherry coinjectionmarker.

Triglyceride Extraction and Quantitation

Triglycerides were extracted from wild-type and mutant C. elegans as

described (Bligh and Dyer, 1959; Noble et al., 2013). Extracted lipids were

quantified using the Enzychrom Triglyceride Assay kit (Bioassay Systems)

according to the manufacturer’s instructions.

Oil Red O Staining

Oil Red O staining was performed as described (Noble et al., 2013) with the

following change: animals were fixed for 5 min with 4% formaldehyde (Fisher

Scientific) and 0.5% b-mercaptoethanol (Acros Organics) before undergoing

three freeze-thaw cycles. For oil Red O experiments in which animals were

treated with a non-hydrolyzable cGMP analog, animals were seeded on plates
12 Cell Reports 14, 1–14, February 23, 2016 ª2016 The Authors
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containing either 200 mM 8-(4-chlorophenylthio)-guanosine 30,50-cyclic mono-

phosphate (Sigma-Aldrich) or 10% DMSO vehicle. Within a single experiment,

2,000–3,000 animals were fixed and stained. All experiments were repeated at

least three times. Wild-type animals were included as controls in each inde-

pendent experiment.

RNAi

RNAi experiments were conducted as previously described (Noble et al.,

2013). Plates were seeded with HT115 bacteria containing vector or the rele-

vant RNAi clone 4 days prior to seeding larvae.

Image Acquisition and Quantitation

Black and white images of oil-Red-O-stained worms were captured using a

103 objective on a Zeiss Axio Imager microscope. Images were quantified us-

ing ImageJ software (NIH). Lipid droplet staining in the first four pairs of intes-

tinal cells was quantified, as described (Noble et al., 2013). Within each exper-

iment, approximately 10–20 animals from each condition were quantified.

Oxygen-Dependent Fat Loss Assay

For each strain, approximately 3,000 synchronized L1 larvae were seeded

onto each of three plates. Worms were grown at 20�C for 52 hr, after which

all plates were transferred to the bench top. Worms subjected to the fasting

protocol were washed off the plates with PBS with five sequential washes

over a 30-min period to eliminate residual bacteria and then seeded onto

NGM plates without food. Worms were then subjected to a 2.5-hr fasting

period at either 21% or 10% oxygen. To establish the time course of fasting,

pilot experiments were conducted at atmospheric (21%) oxygen. The ‘‘21%

fasted’’ plates were placed in a non-airtight container at room temperature.

The ‘‘fed’’ control plates were placed in a similar but separate container. The

‘‘10% fasted’’ plates were placed in a custom-designed sealed acrylic oxygen

chamber (TSRI Instrumentation and Design Lab) fitted with inlet and outlet

valves. The inlet valve was connected via bubble tubing to a pressurized oxy-

gen and nitrogen pre-mixture containing 10% oxygen (Praxair), and the outlet

valve was exposed to air. All plates were positioned right side up with the lids

slightly ajar. The sealed chamber was then perfused for 15 min with 10% ox-

ygen. Following perfusion, both valves were closed. During the experiment,

pressure inside the chamber was held constant, as judged by a gauge placed

inside the oxygen chamber. The chamber was kept at room temperature for an

additional 2 hr 15 min, so that all fasted conditions remained off food for a total

of 2.5 hr following the washes. At the end of this period, worms from the

respective conditions were collected for oil Red O staining.

Calcium Imaging

N2;flp-8::mCherry;flp-8::GCaMP5K, gpa-8(pk345);flp-8::mCherry;flp-8::

GCaMP5K, and gcy-36(db66);flp-8::mCherry;flp-8::GCaMP5k transgenic ani-

mals were used for GCaMP5k imaging. We used a microfluidic chamber

constructed with the oxygen-permeable poly(dimethylsiloxane) (PDMS) as

described (Zimmer et al., 2009). A Valvebank II (AutoMate Scientific) was

used to control input from two pressurized pre-mixtures of oxygen and nitro-

gen containing either 10% oxygen or 21% oxygen (Praxair). The gas flow rate

was set to 0.26 psi at the outlet of the chamber as judged by a VWR traceable

pressure meter. Immediately before imaging, individual day 1 adult animals

were sequentially transferred to two unseeded plates. Individual C. elegans

adults were then transported into the chamber in a drop of S Basal buffer con-

taining 5 mM tetramisole hydrochloride (Sigma) via Tygon tubing (Norton). An-

imals were constantly submerged in S Basal buffer while inside the chamber.

After the animals were immobilized inside the chamber, GCaMP5k fluores-

cence was visualized at 403 magnification using a spinning disk confocal mi-

croscope (Olympus) using MetaMorph (version 6.3r7; Molecular Devices).

Wormswere pre-exposed to 10%oxygen for 5min in themicrofluidic chamber

as described (Zimmer et al., 2009). GCaMP5k fluorescence was recorded by

stream acquisition for 2 min at a rate of 8.34 frames/s with an exposure time

of 20 ms using a 12-bit Hamamatsu ORCA-ER digital camera. Each animal

was recorded once. GCaMP5k-expressing neurons were marked by a region

of interest (ROI). The position of the ROI was tracked using the ‘‘TrackObjects’’

function in MetaMorph. An adjacent ROI was used to subtract background

from the total integrated fluorescence intensity of the ROI. Data were analyzed
7
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using MATLAB (MathWorks). Fluorescence intensity is presented as the

percent change in fluorescence relative to the baseline (DF/F0). F0 was

measured in worms exposed to 10% oxygen during the first 9–13 s for each

recording and calculated as an average over that period. Maximum DF/F0
was measured in worms exposed to 21% oxygen during the first 21–23 s for

each recording and calculated as an average over that period. All animals

were day 1 adults at the time of imaging. The number of animals used for

each condition is denoted in the figures.

Statistics

All oil Red O results are presented relative to wild-type unless otherwise noted.

Error bars represent SEM. Student’s t test, one-way ANOVA, and two-way

ANOVAwereusedwhere indicated.Bonferroni’s correction formultiplecompar-

isonswas used for all ANOVAs. Kruskal-Wallis with Dunn’smultiple comparison

tests was used where indicated. All experiments were performed at least three

times. Wild-type animals were included as controls for each experiment.
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Figure S1. GPA-8 is required to maintain peripheral fat levels, related to Figure 1. 

(A) All viable C. elegans Gα mutants were fixed and stained with oil Red O. Fat content 

was quantified for each genotype and is expressed as a percentage of wild-type 

animals ± SEM (n=10–20). ***, p<0.001 by Student’s t-test.  

(B) Food intake was measured by counting the rhythmic contractions of the pharyngeal 

bulb over a 10 s period using a Zeiss M2-Bio microscope at 10X magnification. Data are 

expressed as a percentage of wild-type animals ± SEM. n.s., not significant by Student’s 

t-test. 
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Figure S2. Oxygen-dependent fat regulation is not a function of the hypoxia-

sensing pathway, related to Figure 3. 

(A) Representative images are shown of animals fixed and stained with oil Red O (upper 

panels). Fat content was quantified for each genotype and is expressed as a percentage 

of wild-type animals ± SEM (lower panels; n=8-10). No significant differences were 

observed by one-way ANOVA. 

(B) Wild-type adult animals were fasted for either 2, 3, or 4 h. Representative images are 

shown of animals fixed and stained with oil Red O (upper panels). Fat content was 

quantified for each condition and is expressed as a percentage of fed animals ± SEM 

(lower panels; n=11-18). ***, p<0.001 by Student’s t-test. 

(C) Wild-type adult animals on live bacteria were exposed to either 21% or 10% oxygen 

for a period of 2.5 h. Representative images are shown of animals fixed and stained with 

oil Red O (upper panels). Fat content was quantified and is expressed as a percentage 

of animals exposed to 21% oxygen ± SEM (lower panels; n=17-19). n.s., not significant 

by Student’s t-test. 

(D) Wild-type adult animals raised on live bacteria were washed once and transferred to 

plates containing heat-killed bacteria. Animals were exposed to either 21% or 10% 

oxygen for a period of 2.5 h. Representative images are shown of animals fixed and 

stained with oil Red O (upper panels). Fat content was quantified and is expressed as a 

percentage of animals exposed to 21% oxygen ± SEM (lower panels; n=20-23). n.s., not 

significant by Student’s t-test. 
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Figure S3. gpa-8 mutants show oxygen-dependent fat regulation on heat-killed 

bacteria, related to Figure 3. 

Adult wild-type adult animals and gpa-8 mutants raised on live bacteria were washed 

once and transferred to plates containing heat-killed bacteria. Animals were exposed to 

either 21% or 10% oxygen for a period of 2.5 h. Representative images are shown of 

animals fixed and stained with oil Red O (upper panels). Fat content was quantified and 

is expressed as a percentage of wild-type animals exposed to 21% oxygen ± SEM 

(lower panels; n=20-21). **, p<0.01 and ***, p<0.001 by two-way ANOVA.
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Figure S4. Properties of URX neurons in wild-type, gpa-8 mutants and gcy-36 

mutants, related to Figure 4. 

(A) We imaged mCherry fluorescence in wild-type and gpa-8 animals expressing both 

GCaMP5k and mCherry under the control of the flp-8 promoter. Images were taken in 

animals exposed to 21% oxygen. For each genotype, the fluorescence intensity was 

imaged at the same exposure, determined to be within the linear range. Fluorescence 

intensity was quantified and expressed as an average ± SEM (n=34). n.s., not significant 

by Student’s t-test.  

(B-D) Maximum ΔF/F0 values at 21% oxygen are plotted against the baseline 

fluorescence at 10% oxygen (F0) for each animal in the wild-type, gpa-8, and gcy-36 

backgrounds (n=25-50).  
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Figure S5. Inactivation of ACC/pod-2 and elo-2 robustly decreases body fat 

without overt developmental effects, related to Figure 5. 

(A) We generated transgenic animals expressing GFP under the control of the ACC/pod-

2 promoter. A representative animal is shown. White arrowheads indicate the pharynx 

and the intestine. We observed GFP expression solely in the intestine. 

(B) Representative images are shown of vector, pod-2 and elo-2 RNAi-treated wild-type 

animals fixed and stained with oil Red O (upper panels). Fat content was quantified for 

each condition and is expressed as a percentage of vector RNAi ± SEM (lower panels; 

n=8-20). ***, p<0.001 by Student’s t-test. 

(C) Representative images are shown of living day 1 adult vector, pod-2 and elo-2 RNAi-

treated wild-type animals. 

(D) The number of eggs within each wild-type animal treated with vector, pod-2 or elo-2 

RNAi was counted at the time of URX imaging. Data are expressed as average ± SEM 

(n=47-56). n.s., not significant by one-way ANOVA. 

 

 



Figure S6
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Figure S6. RNAi-dependent body fat loss modulates URX neuronal function in a 

GPA-8-dependent manner, related to Figure 6. 

(A-F) Maximum ΔF/F0 values at 21% oxygen are plotted against the baseline 

fluorescence at 10% oxygen (F0) for individual wild-type and gpa-8 animals treated with 

the denoted RNAi (n=34-56).  
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