
S1 TEXT

Silent Neurons

We define a neuron as silent, if it does not emit more than S⇥ spikes within the system evolution, which we typically
take as the time taken for the network to evolve through to 107 spikes. In particular, in S 1 (a,b) Figs we report
the fraction of active neurons n⇤ versus the synaptic strength for two parameter settings and for several values of the
considered threshold, namely 0  S⇥  100. In practice, we observe that neither the minimal value of n⇤ nor the
value for which the minimum is reached, appears to strongly depend on the chosen threshold, thus demonstrating the
robustness of the results that we present through the article.

Mechanisms for the resurgence of silent neurons

In what follows we report the neuronal distributions of the average inter-spike intervals ISI, of the corresponding
CV , of the associated average e↵ective synaptic input W i ⌘ Ii � gEi and standard deviation �(Wi). In particular,
we consider these distributions for two di↵erent stimuli dispersion (namely, �V = 5 mV and 1mV) as well as for two
synaptic strengths (namely, g ' gmin and g >> gmin).

For �V = 5 mV (�V = 1 mV) we examine two synaptic strengths, one in proximity of the minimum gmin of n⇤,
where almost 50 % of neurons are active, and one for which almost all the neurons are active again, namely g = 4 and
10 (g = 1 and 4). Let us first consider the distribution of the average ISI of the single cell reported in S 2(a,d) Figs.
At small g the distributions reveal a clear peak at some low ISI plus a long tail. In correspondence of this coupling
the distribution of CV is clearly bimodal as shown in S 2(b,e) Figs with peaks around zero and one, thus indicating
that the neurons associated to the peak in P (ISI) are firing in a regular fashion, while the neurons in the tail of
P (ISI) contributes to the second peak in P (CV ) around CV ' 1. Furthermore, by examining the distributions of the
average e↵ective input W i perceived by each single cell, the PDF for g ' gmin has a peak in proximity the threshold
value Vth.

We can conclude that the neurons contributing to the main peaks in P (ISI) and P (CV ) for g ' gmin are the
winners, which fire faster than the others and almost periodically, thus suggesting that they are not particularly
influenced by the other neurons in the network. Moreover, they correspond to the neurons which are on average
above threshold, as shown in S 2(c,f) Figs. The neurons contributing to the second maximum in P (CV ) and to the
tail of P (ISI) are instead slow neurons whose activity is strongly depressed by the winners and they are neurons
around, or just below threshold, in S 2(c,f) Figs.

As one can appreciate from S 2(a,d) Figs the P (ISI) is completely modified at large g. In such a case, a broad
peak is present extending over two orders of magnitude. In this regime the majority of the cells are on average
below-threshold, as it can be appreciated by the corresponding P (W i), reported in S 2(c,f) Figs as red empty squares,
which reveal an almost Gaussian shape centered well below threshold. Therefore we are now in a situation where all
neurons are active, but the majority are activated due to the fluctuations in the input and they are no more tonically
firing. The fact that now the activity is mostly fluctuation driven, is reflected also in the CV distributions, which are
now centered well above one.

The reported results clearly show that for wider dispersion of the Ii, as measured by �V , a greater lateral inhibition
is required to observe similar e↵ects.

Linear stability analysis

One of the questions that we would like to address is whether the existence of a bursting correlated activity is
related to linear stability properties of the network or not. To characterize these properties, we calculate the maximal
Lyapunov exponent (LE) � for the parameters examined in the text. In order to compute the LE we derive from Eq.
(3) (main text) its linearization, which describes the evolution of infinitesimal perturbations in the reference orbits,



this reads as:

�Ei(n+ 1) = e�↵⌧(n) [�Ei(n) + ⌧(n)�Pi(n)]

� e�↵⌧(n) [↵Ei(n) + (↵⌧(n)� 1)Pi(n)] �⌧(n) , (S1)

�Pi(n+ 1) = e�↵⌧(n) [�Pi(n)� ↵Pi(n)�⌧(n)] , (S2)

�vi(n+ 1) = e�⌧(n) [�vi(n) + (a� vi(n))�⌧(n)] + g�Hi(n)

i = 1, . . . , N ; �vm(n+ 1) ⌘ 0 . (S3)

The boundary condition �vm(n+ 1) ⌘ 0 is a consequence of the event driven evolution. The expression of �⌧(n) can
be computed by di↵erentiating Eqs. (4) and (5) (in main text), namely

�⌧(n) = ⌧v�vm(n) + ⌧E�Em(n) + ⌧P �Pm(n) , (S4)
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. (S5)

The maximal LE � is defined as the the average exponential growth rate of the infinitesimal perturbation

� = (�v1 . . . �vN , �E1 . . . �EN , �P1 . . . �PN )

measured through the equation

� = lim
t!1

1

t
log

| �(t) |
| �0 | , (S6)

where �0 is the initial perturbation. The evolution of the perturbation �(t) at the following times can be obtained
by integrating S1-S3 Eqs in the tangent space in parallel with the evolution in the real space and by performing
at regular time intervals the rescaling of its amplitude to avoid numerical artifacts, as detailed in [2]. A positive �
denotes a chaotic dynamics, a zero maximal LE is associated to a periodic (or quasiperiodic) orbit, and a negative
one to a stable fixed point. It is important to stress that, since we are dealing with an event driven map formulation
of the dynamics, the zero Lyapunov exponent which is always present for continuous time evolution and associated
to the growth rate of a perturbation along the orbit, is automatically discarded. This implies that, if the evolution is
stable, either a fixed point or a periodic solution, we measure in both cases a maximal LE � < 0.

For a fixed pulse duration ⌧↵ = 20 ms, the behaviour of the maximal LE � as a function of the coupling g, for
di↵erent excitability spreading�V , is definitely di↵erent. As shown in S3(a) Fig, for�V = 1 mV the LE (as expected)
is zero for very weakly coupled systems, then it first increases with g and reaches a maximum around g = 2 and then
it decreases monotonically becoming negative for g > 5. For �V = 5 mV, the LE is always positive and increases
with g saturating at an almost constant value � ' 3.4 Hz for g � 6. We are specifically interested in the conditions
for which the measure Q0 is maximized, these points are indicated in S3(a) Fig, as one can notice they correspond
for both considered �V to positive �.

Additionally we have analyzed the behaviour of � as a function of ⌧↵ by fixing g to the value that maximizes Q0 in
the previous analysis. In this case it appears that � increases with ⌧↵ and becomes definitely negative for su�ciently
small ⌧↵ (as shown in S3(b) Fig), in agreement with the results reported in [1, 3]. The cell assembly dynamics of our
network resembles that of MSNs for large ⌧↵, as explained in the text, the point where Q0 is maximal are indicated
also in S3(b) Fig. These evidences seem to suggest that the striatally relevant dynamics correspond to a chaotic
regime, but located in proximity of the transition between chaotic and non-chaotic evolution. The same conclusion
was already reported for a rate model of the striatum in [6].

However, all this analysis and the one reported in [6] consider only infinitesimal perturbations, while it has been
clearly demonstrated that for inhibitory networks finite perturbations play a fundamental role as shown in [1, 3, 4, 7].
In particular our model, even for � < 0, can display erratic evolution almost indistinguishable from chaos due to the
so-called Stable Chaos mechanism [1, 5]. This leads us to conclude that the usual Lyapunov exponent is unable to
capture the degree of erratic motion present in these systems, due to the possible amplification of finite amplitude
perturbations.



State Transition Matrices for di↵erent regimes

In the main text we have just reported the averaged State Transition Matrix (STM) corresponding to the consecutive
presentation of two stimuli for parameters obtained by maximizing Q0. Here we want to show how the STM is modified
by considering ⌧↵ = 20 ms, for which Q0 is maximal, and for a smaller pulse duration, namely ⌧↵ = 2 ms, for which
the evolution of the network is seemingly Poissonian. The upper panel of S5 Fig show another realization of the
network obtained for the same parameters of Fig. 5 (in main text). The lower panels correspond to ⌧↵ = 2ms. The
raster plots clearly show that for ⌧↵ = 20 ms the network exhibits a clear patterned activity with frequent switch from
an activated assembly to another, furthermore there is a low correlation between the network activities in presence of
the two di↵erent stimuli. As shown in S 5(b,c) Figs. For ⌧↵ = 2 ms the system presents much less variability. While
it is still capable of discriminating between two di↵erent stimuli, now the system fails in revealing a clear assembly
switching during the presentation of a single stimulus (see lower panels of S 5 Fig).

Synchronized Event Transition Matrices and number of coactive cells for di↵erent network realizations

We present two di↵erent realizations of the numerical experiment performed in the sub-section Physiological rel-

evance for biological networks under di↵erent experimental conditions. The di↵erence between the realizations lies
on the random connectivity matrix Cij , which is generated at each realization with the same connection probability.
The results are presented in S 7 Fig. More precisely, in S 7(a,e) Figs are reported the SETMs for maximal Q0 (g = 8
for the chosen parameters). These are characterized by a large variability in their elements when compared with the
corresponding SETMs obtained for decreased inhibition (namely, g = 1), shown in S 7(c,g) Figs, is always smaller.
The di↵erence between the two regimes is also evidenced in the number of coactive cells: at maximal Q0 each state is
well defined, as illustrated in S 7(b,f) Figs. Since diagonal elements (representing the number of neurons active in a
given state) present larger bars compared with the o↵-diagonal ones (representing the overlap between two di↵erent
states) Instead, in the set-up with g = 1 the states are hardly distinguishable, diagonal and o↵-diagonal bars have
similar heights (as shown in S 7(d,h) Figs)
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