

S 6. Fig. Pattern Separation. Dissimilarity measure in time for an observation window of length a) $T_E = 2$ s and b) $T_E = 10$ s, for two values of $\tau_{\alpha}=20$ ms (black circles) and $\tau_{\alpha}=2$ ms (red squares) at a fixed value of f = 0.2. It is clearly observed that $\tau_{\alpha} = 20$ ms more effectively differentiates the similar inputs in both observation windows, as seen by the larger values of dissimilarity respect to the $\tau_{\alpha} = 2$ ms. The initial increase of $d^f(t)$ observable for $\tau_{\alpha} = 20$ ms in panel (a) is probably due to the fact that the dynamics for this choice of parameters is chaotic as shown in the *Linear stability analysis* sub-section. Therefore the increase can be associated to a transient evolution towards the final attractor. Other parameters used: $\Delta T = 50$ ms, g = 8, N = 400, K = 20.