A Appendix

A.1 Mathematical proofs

First we introduce the basic setup and notation.

Model A.1. Let (Q), F,{Py : ¢ € ©}) be a statistical experiment and let H = {Hy, ..., Hy}
denote a set of null hypotheses of interest with @ # H; C © foralli € {1,...,m}. Let p;,i €
{1,...,m}, denote the marginal p-value for testing H; versus K; : © \ H;. A (non-randomized)
multiple test procedure @ ;) = (p1,.-., q)m)T for testing H., is a vector of measurable mappings
(individual tests) from the sample space into {0, 1}™. In this, the event { ¢; = 1} means rejection of
the i-th null hypothesis H;. As convention, the index £ will be used to index families, while i is used to
index individual hypotheses.

Relevant quantities.

Definition A.1. Under the assumptions of Model[A.1], we let the total number of rejections, the number
of erroneous rejections, the number of correct rejections, and the FDR, respectively, of P (m) be defined
as

Ru(pum) = Hie{l,...,m}:gi=1}, (A1)
Vi(emy) = Hi€{l,...,m}:@;=1andH; is true}|, (A.2)
Sm(eamy) = WHi€{l,...,m}:@;=1andH; is false}|, (A.3)
Vi (@ (m))
FDR = Ey |-t | (A.4)
ﬁ((P(m)) 8 Rm((p(m))\/l

The multiple test ¢ ,,,) is said to control the FDR at level a € (0,1) if

sup FDRg((p(m)) <.
sG]

It is said to control the FDR asymptotically at level x as m — oo if

lim sup sup FDRy (@) < a.
m—oo @

If the m hypotheses are structured in disjoint families H1, . . ., Hy with |Hy| = my for1 <k < m, a
multiple test ¢ ,,, ) is applied within each family, and we set ¢ ;) = ((p(m D7 Pmy) )T, we define
the global FDR of P (m) by

Y51 Vi (9(my)
{212:1 Rme(fP(mé))} V1

9FDRy(@(m)) = Ey

In the sequel, all considered multiple test procedures are such that the quantities in (A.1) -
actually only depend on the joint distribution of the (random) p-values p1,..., pm, and one may
assume that (), F) = ([0,1]™, B([0,1]™)) without loss of generality.



Critical value functions and rejection curves. The critical values «;.,;, from Definition 2 may be
defined in terms of a critical value function p : [0,1] — [0, 1], where p is non-decreasing and
continuous, p(0) = 0 and &;.,, = p(i/m),i € {1,...,m}. For a given critical value function p,
the function r defined by r(f) = inf{u : p(u) = t} for t € [0,1] is called the rejection curve
corresponding to p.

The AORC 7, : [0,1] — [0, 1] is defined by

ra(t) =

t

-wta O

and the corresponding critical value function is given by 7, '(t) = 1 — r4(1 — t), see [Finner et al.
[2009]. The critical values induced by this critical value function are the ones given in Definition 3.

Lemma A.1 (Sen|[1999]). Denote the empirical cumulative distribution function (ecdf) of the p-values
pll ey pm byFm, given by

t) =Y Tou(pi)
i=1

Assume that a;.,, = p(i/m),i € {1,...,m} for a critical value function p with corresponding
rejection curve r. Then it holds

Pizm < Q. if and only ifﬁm(pi:m) > 7’(pi:m)-

Additional technical assumptions. Let 1 denote the number and gny(my) = myy/my the
proportion of true null hypotheses in family ¢ € {1,...,k}. Define 7r,(m) = my/m as the propor-
tion of hypotheses belonging to family £. Consider an asymptotic setting such that V¢ € {1, ceey k} :
my — oo. For convenience, we assume 77;(m) — 71y € (0,1) and gn¢(my) — qne € [0,1].

Let 9* = &*(mpy, ..., myk) denote a parameter value such that for every family H,, 1 < ¢ < k,
the m ¢ p-values corresponding to true null hypotheses are uniformly distributed on [0, 1] and jointly
stochastically independent, and that the remaining (mg — mNg) p-values corresponding to false null
hypotheses are almost surely equal to zero. Such a parameter value is commonly referred to as
a Dirac-uniform configuration, see, e. g., Section 2.2.2 of |Dickhaus| [2014] and references therein.
Notice that #* does not necessarily have to be contained in ©. Under ¢, the ecdf of the m, p-
values in family H,, say ﬁmbg, converges in the Glivenko-Cantelli sense to ﬁm,g, given by ﬁoo,g(t) =
(1 —gne) +gnet, t € ]0,1]. Furthermore, 7, and ﬁmg possess a unique point of intersection on
[O 1), cf. Figure 5.2 of Dickhaus| [2014]. We denote by tb]w the abscissa of this point of intersection.
In general t = ;. is called a crossing point between Fy, and 7 if it satisfies Fyy (pin) > 7(Piom)

and By (pis1om) < r(Pig1m) fori € {1,...,m — 1} or By (prm) > (P fori = m.

Finally, we introduce the following assumption regarding the type | error behavior of quO with respect
to the parameter ¢ of the statistical model.

Assumption A.1. For given numbersmy, . . ., My, the parameter value * = 0*(mya, . .., mny)

is a least favorable parameter configuration (LFC) for the FDR of (pf{o) 1 < /¢ <k, at least asymp-

totically as min <<y my — oo, where q) (m ) denotes the proposed two-stage test applied in family

Hy. This means that FDRg(go( )) < FDRy~ ((p( )) for all & which are such that exactly my null
hypotheses are true in family Hy, 1 < £ < k.

Assumption [A.1]is a standard assumption in FDR theory; see, among others, [Blanchard et al. [2014]
and |Bodnar and Dickhaus|[2014] and references therein.



Main results.

Theorem A.1. Let ¢ € © and assume that for 1 < ¢ < k the multiple test ®(m,) is an SUD test

based on the critical value function p < r, 1 (with corresponding rejection curve r). Furthermore,
let the assumptions from above be fulfilled and let @,y = (@(my), - - -/ go(mk))T. For notational
convenience, let Ry, = R, (@ (,)) @nd Vin, = Vi, (¢(m,))-

If
R
vee{1,...,k}: lim Py (ﬂ € (o,r,x(tqw(w))]> =1,

mMy—r00 mg

then it holds that
lim sup gFDRy (@ (1)) < a.

m—00

Proof. The global FDR computes as

— k
m ! 26:1 Vme

o ({2t R} 1)

Let f,,, € [0,1] denote the random crossing point between 7 and the ecdf of the p-values ﬁm[’g
characterizing the rejection rule of ¢,,). This allows for the representation Ry, /m, = r(tm,) =

ﬁmg,ﬁ(tw) and Vy,, = mNgﬁNmZ’g(tme). This means that the right-hand side of equals

[ZIE—1 ﬂe(m)quﬁng,e(fmg)] _ ]El9 [ZIZ—1 7T€(m)quﬁng,ﬂ(tmz)r(tme)/r(tmf)] .
Yboy 7we(m)r(tm,) Yy 7o (m)7 (tm,)

iz Vi

{z’g;l Rw} vil| Fo

9FDRy(¢(m)) = Eg (A.5)

(A.6)
An argumentation analogous to the one in the proof of Theorem 4.5 in|Gontscharuk|[2010] allows us to
find an asymptotic non random upper bound for g ¢ Fnm, (£m,) /7 (£m,). According to (5) in Definition
5, we can choose a 6 > 0 and 1 large enough such that sup, g | Fnm, (£) — Fn(t)| < 6. Then
it holds that

aneENm, (tm) /7 (tm,) < Gnetm, /7(tm,) + O(8) < nietay, /Ta(tgy,) + O(6).

By design of the function 74, it holds that gntg,, /7« (tgy,) = min{a, gn,}. Thus, it holds that the
right-hand side of can for eventually all large 11, be bounded from above by

2221 Né(m)rzx(tmg) min{a, g/} oS
22:1 ﬂg(m)ra(tmg) " ( )

Since J can be chosen arbitrarily small, this entails

lim sup gFDRy (@ (1)) < a.

m—ro0

Theorem A.2 (Statistical properties of the procedure gDHO). Assume that the assumptions from above
are fulfilled. Then, the proposed procedure q)HO defined by Algorithm 2 controls the FWER at the
stage of the families at level x.. Furthermore, the global FDR of quO and the FDR of q)HO within each
family are asymptotically bounded by «.



Proof. Recall that the family H, is selected at the first stage of analysis if and only if the corresponding
conjunction p-value p”f/mf does not exceed a/ k. Since k > k, the Bonferroni inequality yields the
first assertion.

In order to show asymptotic control of the global FDR, assume first that gy < 1forall1 < ¢ < k.

We notice that every hypothesis which is rejected by go? ) would also be rejected by quO(RC) alone,

where q)AO(RC) denotes the SUD test which is applied in family H, in the second stage of q)( )

1 < ¢ < k. This follows from the fact that x and hence, 1, are fixed constants and the rejection rule

of qagﬂ% involves the additional condition regarding p*¢/ ™. Hence, le(q)gn(z)) < ng((Pfﬁﬁs))-

Under ¢* (cf. Assumption and by construction of r, we have, by setting t,,, = 1 forgne <

«, that Rmé(gofORC )/WIg — r,x(tqm) almost surely, cf. Corollary 5.1.(i) of [Finner et al.| [2009].

We conclude that lim sup,, ., ng( )/mg < 7a(tgy,) forall @ € ©. On the other hand,

consider for each 1 < ¢ < k such that Hg has been selected at the first stage of analysis the
following chain of inequalities:

Pugm, = min {P(Hrlﬂ')imz}

j=1,...,(my—up+1)

: —uy+1)
< /M — min {M - }
= F =1, (my—1ug+1) j P lug=1+j):mq

< <! (—mm> <rg! <WKWJ “) = ;! <ﬂ>
K my my my

Thus, if the family H, is rejected, the SUD procedure goAO(RC) will reject at least 1y hypotheses within

‘H 4. Notice that, by definition of 1,, we have that u,/m, > k. 1 We conclude that, in each selected
family H,, im inf,;;, o0 Rme((ng))/mé > (. Thus, Theorem can be applied with k replaced

by [{1 < ¢ <k : H, has been rejected }| in this case.

However, if for some ¢ € {1,...,k} we have gny = 1, we can find a number 11, which is large
enough such that ]Plg(p”é/mf < a/x) < a/x due to the assumed validity of the conjunction p-
value. Hence, letting x denote all observed data, straightforward calculation yields for @, which is such
that gy = 1, that

B lm] - [ mitga

B Vi, (x) Vi, (x)
= /{ —dIPﬁ(X)—i—/{ 7~ =dPs(x)

p”é/mlglx/x} ng(x) V1 p”ﬁ/’"£>p¢/x} Rmé(.X') V1

/ 1dP, + 0
{phe/me<a/x}

= Pe(p"/™ < a/x) < a/x,
which completes the argumentation.

Asymptotic FDR control within each family can be established as follows. If a family H is not rejected,

we have Rmé(qol(q%) = Vme(qogg)) = 0. On the other hand, in each selected family H,, it holds

Vmé(q)( 4)) < Vm[((pAORC)) by the same argumentation as for Rmé(q)( )) Under the LFC 9%,

this also entails that g AORC
Vm@(q)( 1,)) me(q)u/ (m/))

R, (?572)) V1 Ry, (Q’AO(R(/:)) V1




almost surely, because the structure of an SUD test yields that, as soon as Vy,, (q)gnoi)) > 1, we have
Rmé‘(@(}fn?)) = me((p&%) + (my — myy), and the mapping x — x/(x 4 a) is isotone in x > 0
AORC

fora > O.VSince (pw (m))

asymptotically controls the FDR under ¢*, this implies the assertion. |

A.2 The tuning parameter «

Here, we report results of a power study regarding the tuning parameter k. The study was done in two
setups for the normal means problem with effect size #* and variance 1, analogous to the simulations
in “Computer simulations regarding the power of goHO“. Our theoretical investigations indicate that
we can expect the power of the procedure (pHO within one selected family H, (in our case of size
my = 2,000) to depend on the ratio of true null hypotheses g, within the family. To this end, we
considered a balanced and a highly unbalanced case by setting qn, € {0.5,0.99}. In both cases
the power of quO has been estimated as a function of u* € [0, 5], and we let the parameter x range
from 1 to 10,000,000 on a log10 scale.

The plots in S1 Fig. indicate that small values of k lead to a high specificity in case of a large value of
qnNv¢, While large values of k lead to a good sensitivity in case of a moderate value of gn. This is line
with the recommendation that x should be chosen according to the amount of signals within a family
which is considered relevant.
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