
A Appendix

A.1 Mathematical proofs

First we introduce the basic setup and notation.

Model A.1. Let (Ω,F , {Pϑ : ϑ ∈ Θ}) be a statistical experiment and let H = {H1, . . . , Hm}
denote a set of null hypotheses of interest with ∅ 6= Hi ⊂ Θ for all i ∈ {1, . . . , m}. Let pi, i ∈
{1, . . . , m}, denote the marginal p-value for testing Hi versus Ki : Θ \ Hi. A (non-randomized)
multiple test procedure ϕ(m) = (ϕ1, . . . , ϕm)> for testing Hm is a vector of measurable mappings
(individual tests) from the sample space into {0, 1}m. In this, the event {ϕi = 1} means rejection of
the i-th null hypothesis Hi. As convention, the index ` will be used to index families, while i is used to
index individual hypotheses.

Relevant quantities.

Definition A.1. Under the assumptions of Model A.1, we let the total number of rejections, the number
of erroneous rejections, the number of correct rejections, and the FDR, respectively, of ϕ(m) be defined
as

Rm(ϕ(m)) = |{i ∈ {1, . . . , m} : ϕi = 1}|, (A.1)

Vm(ϕ(m)) = |{i ∈ {1, . . . , m} : ϕi = 1 and Hi is true}|, (A.2)

Sm(ϕ(m)) = |{i ∈ {1, . . . , m} : ϕi = 1 and Hi is false}|, (A.3)

FDRϑ(ϕ(m)) = Eϑ

[
Vm(ϕ(m))

Rm(ϕ(m)) ∨ 1

]
. (A.4)

The multiple test ϕ(m) is said to control the FDR at level α ∈ (0, 1) if

sup
ϑ∈Θ

FDRϑ(ϕ(m)) ≤ α.

It is said to control the FDR asymptotically at level α as m→ ∞ if

lim sup
m→∞

sup
ϑ∈Θ

FDRϑ(ϕ(m)) ≤ α.

If the m hypotheses are structured in disjoint familiesH1, . . . ,Hk with |H`| = m` for 1 ≤ k ≤ m, a
multiple test ϕ(m`)

is applied within each family, and we set ϕ(m) = (ϕ(m1)
, . . . , ϕ(mk)

)>, we define
the global FDR of ϕ(m) by

gFDRϑ(ϕ(m)) = Eϑ

 ∑k
`=1 Vm`

(ϕ(m`)
){

∑k
`=1 Rm`

(ϕ(m`)
)
}
∨ 1

 .

In the sequel, all considered multiple test procedures are such that the quantities in (A.1) - (A.4)
actually only depend on the joint distribution of the (random) p-values p1, . . . , pm, and one may
assume that (Ω,F ) = ([0, 1]m,B([0, 1]m)) without loss of generality.
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Critical value functions and rejection curves. The critical values αi:m from Definition 2 may be
defined in terms of a critical value function ρ : [0, 1] → [0, 1], where ρ is non-decreasing and
continuous, ρ(0) = 0 and αi:m = ρ(i/m), i ∈ {1, . . . , m}. For a given critical value function ρ,
the function r defined by r(t) = inf{u : ρ(u) = t} for t ∈ [0, 1] is called the rejection curve
corresponding to ρ.

The AORC rα : [0, 1]→ [0, 1] is defined by

rα(t) =
t

t(1− α) + α
, t ∈ [0, 1],

and the corresponding critical value function is given by r−1
α (t) = 1− rα(1− t), see Finner et al.

[2009]. The critical values induced by this critical value function are the ones given in Definition 3.

Lemma A.1 (Sen [1999]). Denote the empirical cumulative distribution function (ecdf) of the p-values
p1, . . . , pm by F̂m, given by

F̂m(t) =
m

∑
i=1

I[0,t](pi).

Assume that αi:m = ρ(i/m), i ∈ {1, . . . , m} for a critical value function ρ with corresponding
rejection curve r. Then it holds

pi:m ≤ αi:m if and only if F̂m(pi:m) ≥ r(pi:m).

Additional technical assumptions. Let mN` denote the number and qN`(m`) = mN`/m` the
proportion of true null hypotheses in family ` ∈ {1, . . . , k}. Define π`(m) = m`/m as the propor-
tion of hypotheses belonging to family `. Consider an asymptotic setting such that ∀` ∈ {1, . . . , k} :
m` → ∞. For convenience, we assume π`(m)→ π` ∈ (0, 1) and qN`(m`)→ qN` ∈ [0, 1].

Let ϑ∗ = ϑ∗(mN1, . . . , mNk) denote a parameter value such that for every family H`, 1 ≤ ` ≤ k,
the mN` p-values corresponding to true null hypotheses are uniformly distributed on [0, 1] and jointly
stochastically independent, and that the remaining (m` −mN`) p-values corresponding to false null
hypotheses are almost surely equal to zero. Such a parameter value is commonly referred to as
a Dirac-uniform configuration, see, e. g., Section 2.2.2 of Dickhaus [2014] and references therein.
Notice that ϑ∗ does not necessarily have to be contained in Θ. Under ϑ∗, the ecdf of the m` p-
values in familyH`, say F̂m`,`, converges in the Glivenko-Cantelli sense to F̂∞,`, given by F̂∞,`(t) =
(1− qN`) + qN`t, t ∈ [0, 1]. Furthermore, rα and F̂∞,` possess a unique point of intersection on
[0, 1), cf. Figure 5.2 of Dickhaus [2014]. We denote by tqN`

the abscissa of this point of intersection.

In general t = αi:m is called a crossing point between F̂m and r if it satisfies F̂m(pi:m) ≥ r(pi:m)
and F̂m(pi+1:m) < r(pi+1:m) for i ∈ {1, . . . , m− 1} or F̂m(pm:m) ≥ r(pm:m) for i = m.

Finally, we introduce the following assumption regarding the type I error behavior of ϕHO with respect
to the parameter ϑ of the statistical model.

Assumption A.1. For given numbers mN1, . . . , mNk, the parameter value ϑ∗ = ϑ∗(mN1, . . . , mNk)
is a least favorable parameter configuration (LFC) for the FDR of ϕHO

(m`)
, 1 ≤ ` ≤ k, at least asymp-

totically as min1≤`≤k m` → ∞, where ϕHO
(m`)

denotes the proposed two-stage test applied in family

H`. This means that FDRϑ(ϕHO
(m`)

) ≤ FDRϑ∗(ϕHO
(m`)

) for all ϑ which are such that exactly mN` null

hypotheses are true in familyH`, 1 ≤ ` ≤ k.

Assumption A.1 is a standard assumption in FDR theory; see, among others, Blanchard et al. [2014]
and Bodnar and Dickhaus [2014] and references therein.
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Main results.

Theorem A.1. Let ϑ ∈ Θ and assume that for 1 ≤ ` ≤ k the multiple test ϕ(m`)
is an SUD test

based on the critical value function ρ ≤ r−1
α (with corresponding rejection curve r). Furthermore,

let the assumptions from above be fulfilled and let ϕ(m) = (ϕ(m1)
, . . . , ϕ(mk)

)>. For notational
convenience, let Rm`

= Rm`
(ϕ(m`)

) and Vm`
= Vm`

(ϕ(m`)
).

If

∀` ∈ {1, . . . , k} : lim
m`→∞

Pϑ

(
Rm`

m`
∈ (0, rα(tqN`(m`)

)]

)
= 1,

then it holds that
lim sup

m→∞
gFDRϑ(ϕ(m)) ≤ α.

Proof. The global FDR computes as

gFDRϑ(ϕ(m)) = Eϑ

 ∑k
`=1 Vm`{

∑k
`=1 Rm`

}
∨ 1

 = Eϑ

 m−1 ∑k
`=1 Vm`

m−1
({

∑k
`=1 Rm`

}
∨ 1
)
 . (A.5)

Let tm`
∈ [0, 1] denote the random crossing point between r and the ecdf of the p-values F̂m`,`

characterizing the rejection rule of ϕ(m). This allows for the representation Rm`
/m` = r(tm`

) =

F̂m`,`(tm`
) and Vm`

= mN` F̂Nm`,`(tm`
). This means that the right-hand side of (A.5) equals

Eϑ

[
∑k

`=1 π`(m)qN` F̂Nm`,`(tm`
)

∑k
`=1 π`(m)r(tm`

)

]
= Eϑ

[
∑k

`=1 π`(m)qN` F̂Nm`,`(tm`
)r(tm`

)/r(tm`
)

∑k
`=1 π`(m)r(tm`

)

]
.

(A.6)
An argumentation analogous to the one in the proof of Theorem 4.5 in Gontscharuk [2010] allows us to
find an asymptotic non random upper bound for qN` F̂Nm`

(tm`
)/r(tm`

). According to (5) in Definition

5, we can choose a δ > 0 and m` large enough such that supt∈[0,1] |F̂Nm`
(t)− FN(t)| ≤ δ. Then

it holds that

qN` F̂Nm`
(tm`

)/r(tm`
) ≤ qN`tm`

/r(tm`
) +O(δ) ≤ qN`tqN`

/rα(tqN`
) +O(δ).

By design of the function rα, it holds that qN`tqN`
/rα(tqN`

) = min{α, qN`}. Thus, it holds that the
right-hand side of (A.6) can for eventually all large m` be bounded from above by

Eϑ

[
∑k

`=1 π`(m)rα(tm`
)min{α, qN`}

∑k
`=1 π`(m)rα(tm`

)

]
+O(δ).

Since δ can be chosen arbitrarily small, this entails

lim sup
m→∞

gFDRϑ(ϕ(m)) ≤ α.

�

Theorem A.2 (Statistical properties of the procedure ϕHO). Assume that the assumptions from above
are fulfilled. Then, the proposed procedure ϕHO defined by Algorithm 2 controls the FWER at the
stage of the families at level α. Furthermore, the global FDR of ϕHO and the FDR of ϕHO within each
family are asymptotically bounded by α.
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Proof. Recall that the familyH` is selected at the first stage of analysis if and only if the corresponding
conjunction p-value pu`/m` does not exceed α/κ. Since κ > k, the Bonferroni inequality yields the
first assertion.

In order to show asymptotic control of the global FDR, assume first that qN` < 1 for all 1 ≤ ` ≤ k.
We notice that every hypothesis which is rejected by ϕHO

(m`)
would also be rejected by ϕAORC

u`,(m`)
alone,

where ϕAORC
u`,(m`)

denotes the SUD test which is applied in family H` in the second stage of ϕHO
(m`)

,

1 ≤ ` ≤ k. This follows from the fact that κ and hence, u`, are fixed constants and the rejection rule
of ϕHO

(m`)
involves the additional condition regarding pu`/m` . Hence, Rm`

(ϕHO
(m`)

) ≤ Rm`
(ϕAORC

u`,(m`)
).

Under ϑ∗ (cf. Assumption A.1) and by construction of rα, we have, by setting tqN`
= 1 for qN` <

α, that Rm`
(ϕAORC

u`,(m`)
)/m` → rα(tqN`

) almost surely, cf. Corollary 5.1.(i) of Finner et al. [2009].

We conclude that lim supm`→∞ Rm`
(ϕHO

(m`)
)/m` ≤ rα(tqN`

) for all ϑ ∈ Θ. On the other hand,

consider for each 1 ≤ ` ≤ k such that H` has been selected at the first stage of analysis the
following chain of inequalities:

pu` :m`
≤ min

j=1,...,(m`−u`+1)

{
p(u`−1+j):m`

}
≤ pu`/m` = min

j=1,...,(m`−u`+1)

{
(m` − u` + 1)

j
p(u`−1+j):m`

}
≤ α

κ
≤ r−1

α

(
m`/κ

m`

)
≤ r−1

α

(
b1/κ ·m`c+ 1

m`

)
= r−1

α

(
u`

m`

)
.

Thus, if the familyH` is rejected, the SUD procedure ϕAORC
u`,(m`)

will reject at least u` hypotheses within

H`. Notice that, by definition of u`, we have that u`/m` ≥ κ−1. We conclude that, in each selected
family H`, lim infm`→∞ Rm`

(ϕHO
(m`)

)/m` > 0. Thus, Theorem A.1 can be applied with k replaced

by |{1 ≤ ` ≤ k : H` has been rejected}| in this case.

However, if for some ` ∈ {1, . . . , k} we have qN` = 1, we can find a number m` which is large
enough such that Pϑ(pu`/m` ≤ α/κ) ≤ α/κ due to the assumed validity of the conjunction p-
value. Hence, letting x denote all observed data, straightforward calculation yields for ϑ, which is such
that qN` = 1, that

Eϑ

[
Vm`

Rm`
∨ 1

]
=

∫ Vm`
(x)

Rm`
(x) ∨ 1

dPϑ(x)

=
∫
{pu`/m`≤α/κ}

Vm`
(x)

Rm`
(x) ∨ 1

dPϑ(x) +
∫
{pu`/m`>α/κ}

Vm`
(x)

Rm`
(x) ∨ 1

dPϑ(x)

≤
∫
{pu`/m`≤α/κ}

1dPϑ + 0

= Pϑ(pu`/m` ≤ α/κ) ≤ α/κ,

which completes the argumentation.

Asymptotic FDR control within each family can be established as follows. If a familyH` is not rejected,
we have Rm`

(ϕHO
(m`)

) = Vm`
(ϕHO

(m`)
) = 0. On the other hand, in each selected family H`, it holds

Vm`
(ϕHO

(m`)
) ≤ Vm`

(ϕAORC
u`,(m`)

) by the same argumentation as for Rm`
(ϕHO

(m`)
). Under the LFC ϑ∗,

this also entails that
Vm`

(ϕHO
(m`)

)

Rm`
(ϕHO

(m`)
) ∨ 1

≤
Vm`

(ϕAORC
u`,(m`)

)

Rm`
(ϕAORC

u`,(m`)
) ∨ 1
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almost surely, because the structure of an SUD test yields that, as soon as Vm`
(ϕHO

(m`)
) ≥ 1, we have

Rm`
(ϕHO

(m`)
) = Vm`

(ϕHO
(m`)

) + (m`−mN`), and the mapping x 7→ x/(x + a) is isotone in x > 0

for a ≥ 0. Since ϕAORC
u`,(m`)

asymptotically controls the FDR under ϑ∗, this implies the assertion. �

A.2 The tuning parameter κ

Here, we report results of a power study regarding the tuning parameter κ. The study was done in two
setups for the normal means problem with effect size µ∗ and variance 1, analogous to the simulations
in “Computer simulations regarding the power of ϕHO“. Our theoretical investigations indicate that
we can expect the power of the procedure ϕHO within one selected family H` (in our case of size
m` = 2,000) to depend on the ratio of true null hypotheses qN` within the family. To this end, we
considered a balanced and a highly unbalanced case by setting qN` ∈ {0.5, 0.99}. In both cases
the power of ϕHO has been estimated as a function of µ∗ ∈ [0, 5], and we let the parameter κ range
from 1 to 10,000,000 on a log10 scale.

The plots in S1 Fig. indicate that small values of κ lead to a high specificity in case of a large value of
qN`, while large values of κ lead to a good sensitivity in case of a moderate value of qN`. This is line
with the recommendation that κ should be chosen according to the amount of signals within a family
which is considered relevant.
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