1	New insights into virulence mechanisms of rice pathogen
2	Acidovorax avenae subsp. avenae strain RS-1 following exposure
3	to β -lactam antibiotics
4	Bin Li ^{1,#,*} , Mengyu Ge ^{1,#} , Yang Zhang ¹ , Li Wang ¹ , Muhammad Ibrahim ^{1,2} , Yangli
5	Wang ³ , Guochang Sun ³ and Gongyou Chen ^{4,*}
6	¹ State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang
7	University, 310058, Hangzhou, China
8	² Department of Biosciences, COMSATS Institute of Information technology Sahiwal
9	Campus Sahiwal, Pakistan
10	³ State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest and Disease
11	Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
12	⁴ School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240,
13	China
14	
15	[#] These authors contributed equally to this work.
16	*Corresponding author.
17	Bin Li; Gongyou Chen
18	Mailing address: State Key Laboratory of Rice Biology, Institute of Biotechnology,
19	Zhejiang University, 310058, Hangzhou, China. Phone: (+86) 0571 88982412; Fax:
20	(+86) 0571 88982268. E-mail: libin0571@zju.edu.cn; gyouchen@sjtu.edu.cn.
21	

22 Supplementary Information

23

24 Figure S1

FTIR analysis of the EPS from *Acidovorax avenae* subsp. *avenae* strain RS-1. (a) The *hcp*-mutant strain; (b) The wild type strain under exposure to Amp; (c) The wild type strain. Compared to the wild type, both the mutation of *hcp* gene and exposure to Amp caused the disappearance of one peak at 859.16 cm⁻¹ representing phenyl ring substitution bands/alkenes. Each experiment was repeated three times independently with similar results.

- 31
- 32

Figure S2

Gene ontology categories for the differentially expressed genes under Amp (+) vs. Amp (-) condition of *Acidovorax avenae* subsp. *avenae* strain RS-1 transcriptome. All genes were classified into Biological process, Molecular function and Cellular component catalogs based on their gene ontology annotations.

38

39

40 Figure S3

Expression changes of T6SS-related genes in *Acidovorax avenae* subsp. *avenae* strain
RS-1. (a) Mutation of *hcp* gene; (b) Exposure to Amp. Each result represents the
average of three independent determinations with similar results.

- 44
- 45
- 46
- 47

48	Table S1		
49	Primers used in this study.		
50			
51			
52	Table S2.		
53	Effect of three kinds of β -lactam antibiotics on the growth and pathogenicity of		
54	Acidovorax avenae subsp. avenae strain RS-1 to rice seedlings.		
55			
56			
57	Table S3.		
58	Summary of Acidovorax avenae subsp. avenae strain RS-1 cDNA samples sequenced		
59	using the Illumina genome analyze.		
60			
61			
62	Table S4		
63	RNA-Seq data of Acidovorax avenae subsp. avenae strain RS-1 under Amp (-) and		
64	Amp (+) conditions. The data of Amp (-) obtained from Li <i>et al.</i> $(2014)^{10}$ were used as		
65	the control in this study.		
66			
67			
68	Table S5		
69	List of specifically expressed genes under Amp (+) condition of Acidovorax avenae		
70	subsp. avenae strain RS-1 transcriptome.		
71			
72			
73	Table S6		
74	List of specifically expressed genes under Amp (-) condition of Acidovorax avenae		
75	subsp. avenae strain RS-1 transcriptome.		
76			
77	3		

78	Table S7
79	List of the common expressed genes under both Amp (-) and Amp (+) conditions of
80	Acidovorax avenae subsp. avenae strain RS-1 transcriptome.
81	
82	
83	Table S8
84	List of up-regulated expressed genes under Amp (+) vs. Amp (-) condition of
85	Acidovorax avenae subsp. avenae strain RS-1 transcriptome.
86	
87	
88	Table S9
89	List of down-regulated expressed genes under Amp (+) vs. Amp (-) condition of
90	Acidovorax avenae subsp. avenae strain RS-1 transcriptome.
91	
92	
93	Table S10
94	List of differentially expressed β -lactamase-related genes under Amp (+) vs. Amp (-)
95	condition of Acidovorax avenae subsp. avenae strain RS-1 transcriptome.
96	
97	
98	Table S11
99	qRT-PCR analysis of T6SS genes expression in Acidovorax avenae subsp. avenae
100	strain RS-1 under Amp (+) vs. Amp (-) condition.
101	
102	
103	Table S12
104	Gene ontology enrichment analysis for differentially expressed genes under Amp (+)
105	vs. Amp (-) condition of Acidovorax avenae subsp. avenae strain RS-1 transcriptome.
106	
107	

stati per prij
statistice (10)
statistice ruppe prij

Name	Sequence (5'- 3')	Usage	Sources or
		description	References
Pt-hcp	F-CCTCGGATCCATGTCCGTCGATATGTTCATG	Pull-Down and	This study
	R-GCGCGAATTCTTACATTTCCTTGTTGCCCTTG	Bacterial	
		Two-hybrid	
Pt-vgrG	F-CCGAATTCATGACACGCAGCGTCACCATAC	Pull-Down	This study
	R-CATCTCGAGGTGCACGATGAGCCCGTTCTTG		
Pt-lipo	F-GCGGATCCATGCATCGGGAAGCGATGGC	Pull-Down	This study
	R-CCGGAATTCGCGGTCTGGATCTTCACCGC		
Th-hcp	F-CCTCGGATCCATGTCCGTCGATATGTTCATG	Bacterial	This study
	R-GCGCGAATTCTTACATTTCCTTGTTGCCCTTG	Two-hybrid	
Th-lipo	F-GCGGATCCATGCATCGGGAAGCGATGGC	Bacterial	This study
	R-CCGGAATTCGCGGTCTGGATCTTCACCGC	Two-hybrid	
Th-vgrG	F-CCTCTAGAATGACACGCAGCGTCACCATAC	Bacterial	This study
	R-CCGAATTCGTGCACGATGAGCCCGTTCTTGCC	Two-hybrid	
GK-hcp-F	F-TATGGATCCATTTCCTTGTTGCCCTTG	Gene Knockout	This study
	R-CGCGAATTCCGACATCCGTTCCTTCAC		
16S	F-TTGCGGTCCCCTGCTTTCAT	Quantitative	Li et al.
rRNA	R-CGGTAACAGGTCTTCGGATGCT	Real-time PCR	$(2014)^{10}$
clpB	F-GCAGGGCGAGAAGGACAAG	Quantitative	Li et al.
	R-GCCGAGGAACAGGAACGAG	Real-time PCR	$(2014)^{10}$
hcp	F-CTGGGTCAGGTGGAGATCTC	Quantitative	Li et al.
	R-TGGGTCTTGATTTTGGCTGC	Real-time PCR	$(2014)^{10}$
dotU	F-CCAGCATTACCTGCTCGAAT	Quantitative	Li et al.
	R-CCAGGTCTCGTTGTGCAGT	Real-time PCR	$(2014)^{10}$
icmF	F-ACCGTGGGCAGCAATCTCA	Quantitative	Li et al.
	R-GCGAAGTCATCGCTCGTCA	Real-time PCR	$(2014)^{10}$
impA	F-CTTGAACCTGCGGCGGACAC	Quantitative	Li et al.
	R-GCTCGGCGGGAATCACCAT	Real-time PCR	$(2014)^{10}$
impB	F-ATCTCCCTCATCCTGCTCA	Quantitative	Li et al.
	R-TCAGATGCGTCCCATCAG	Real-time PCR	$(2014)^{10}$
impC	F-GCACCACCTGGTCCACAACA	Quantitative	Li et al.
	R-CGAACTGGCCGTATTCCTCT	Real-time PCR	$(2014)^{10}$
impE	F-TGATCGGCTCGCTGTTCG	Quantitative	Li et al.
	R-TGCTTGTACTCGCCCTTGTT	Real-time PCR	$(2014)^{10}$
impF	F-TGGACTGGAAGGACGTGGAA	Quantitative	Li et al.
	R-AGGGTGTTGTGGTGGTTGAA	Real-time PCR	$(2014)^{10}$
impG	F-TGGAACTTCGGCCTCTATGG	Quantitative	Li et al.
	R-TGGTGGAAGATGTCCGAGAA	Real-time PCR	$(2014)^{10}$
impH	F-GCCACAAGTTCCTTTTGCA	Quantitative	Li et al.
	R-AAGAACGGCACGAAATCC	Real-time PCR	$(2014)^{10}$
impJ	F-TCCAGGATGCCAACGACA	Quantitative	Li et al.
	R-GACCACGGTGGGAATGAA	Real-time PCR	$(2014)^{10}$

 Table S1 Primers used in this study

impM	F-GCAATGGCGTCGTCCTCT	Quantitative	Li et al.
	R-CGGTCGTGCCGATCTTCT	Real-time PCR	$(2014)^{10}$
lipo	F-GCAGTGCGGATGTCCGTACCTT	Quantitative	Li et al.
	R-TCCTTGCCCACCGTGATGCT	Real-time PCR	$(2014)^{10}$
pppA	F-AGATCACGCGGGACCATT	Quantitative	Li et al.
	R-TTCCTCGTCGTCGAGCAT	Real-time PCR	$(2014)^{10}$
vgrG-1	F-ATCCGATGGAAAAGAAACTC	Quantitative	Li et al.
	R-AATAGATGCCCTCGTGCT	Real-time PCR	$(2014)^{10}$
vgrG-2	F-GCGTGCAATATGACGAGAGC	Quantitative	Li et al.
	R-CCGGCGGATAGAAGGGAATC	Real-time PCR	$(2014)^{10}$
vgrG-4	F-CTGACGCAGAGCACGAAT	Quantitative	Li et al.
	R-CCGAAGCACCACATACCA	Real-time PCR	$(2014)^{10}$
vgrG-5	F-CATCAAGACCAAGTCCAGC	Quantitative	Li et al.
	R-CAGCCATAATTGCTCTGC	Real-time PCR	$(2014)^{10}$
vgrG-7	F-CCGATGGAAAAGAAACTCAG	Quantitative	Li et al.
	R-AATAGATGCCCTCGTGCT	Real-time PCR	$(2014)^{10}$
vgrG-8	F-TCCTTCCAGAAGTTCAGCC	Quantitative	Li et al.
	R-GGTATTCGTCGGTCCAGATT	Real-time PCR	$(2014)^{10}$

2

3 **Table S2.**

4 Effect of three kinds of β -lactam antibiotics on the growth and pathogenicity of

Treatments	Bacterial growth (OD600)		Plant parameters			
	12 h	24 h	48 h	Root length	Height	Emergence
Strain RS-1	0.15 b	0.82 c	1.24 b	15.94 b	9.16 b	23.33 c
+ Amp	0.03 d	0.79 d	1.20 b	28.97 a	21.06 a	67.74 a
+ Amo	0.03 c	0.92 b	0.97 c	38.47 a	36.63 a	40.00 b
+ Pen	0.34 a	1.12 a	1.33 a	49.10 a	43.60 a	36.67 b
None	-	-	-	177.40 a	132.47 a	100.0 a

5 *Acidovorax avenae* subsp. *avenae* strain RS-1 to rice seedlings.

6 In absence of pathogen, exposure to Amo caused a 20.05%, 40.49% and 20.00% 7 reduction, while exposure to Pen resulted in a 48.93%, 32.79% and 20.00% reduction 8 in root length, plant height and emergence compared to the control. However, there 9 was no significant (P < 0.05) difference in plant parameter between Amp (+) and 10 Amp (-). The same letters indicate no significant differences (P < 0.05) among 11 treatments. Each treatment has 25 replicates and this experiment was repeated four 12 times independently with similar results.

2

3 **Table S3.**

- 4 Summary of Acidovorax avenae subsp. avenae strain RS-1 cDNA samples sequenced
- 5 using the Illumina genome analyze

Sample name	Amp (+, 1)	Amp (+, 2)
Number of reads	14,537,291	16,443,928
Mapped reads	12,679,967	15,732,263
Unique mapped	4,755,618	6,149,831
mRNA percent	35.1%	39.1%
Number and percenta	ge at different transcript levels	
High-	809 (16.68%)	
Medium-1088 (22.43%)Low-2014 (41.52%)		
None-	940 (19.38%)	

Classification of transcription profile for various categories of transcription level was
carried out as described by Nagalakshimi et al. (2008)²⁵. The data of Amp (-) used as
the control in this study were obtained from Li et al. (2014)¹⁰.