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Theoretical results in the Section “network inference when total influence matrix is available”

Lemma 1. ||ΔS||F can be bounded as

||ΔS||F ≤ γ +O(δ 2+ γ2+δγ), (32)

according to Feizi et al.26 where γ and δ are the largest eigenvalues of ΔG and G, respectively satisfy γ � 1,δ < 1 or

||ΔS||F ≤ ||ΔG||F
(1−||G||F −||ΔG||F)(1−||G||F)

, (33)

provided

1−||G||F −||ΔG||F > 0. (34)

Proof. From (11), it follows that

G0+ΔG = S0+S0G0+S0ΔG

+ΔS+ΔSG0+ΔSΔG

⇔ ΔG = S0ΔG+ΔS+ΔSG0+ΔSΔG

⇔ ΔG = G0(I+G0)−1ΔG+ΔS(I+G0+ΔG)

⇒ ΔS = ((I+G0)(I+G0)−1−G0(I+G0)−1)

ΔG(I+G0+ΔG)−1

⇒ ΔS = (I+G0)−1ΔG(I+G0+ΔG)−1

⇒ ||ΔS||F = ||(I+G0)−1ΔG(I+G)−1||F
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= ||(I− (−G0))−1ΔG(I− (−G))−1||F
a
≤ ||(I− (−G0))−1||F ||ΔG||F ||(I− (−G))−1||F
b
≤ 1

1−||(−G)||F
||ΔG||F

1
1−||G||F

c
≤ 1

1−||G||F −||ΔG||F
||ΔG||F

1
1−||G||F

We have (a) because of the sub-multiplicative property ||AB||F ≤ ||A||F ||B||F . for (b) to hold:

||G0||F < 1 (35)

||−G||F < 1 (36)

Because ||G0||F = ||G−ΔG||F ≤ ||G||F + ||ΔG||F , sufficient condition for (35,36) to hold is ||G||F + ||ΔG||F ≤ 1.

We have (c) because

1−||G0||F ≥ 1−||G||F −||ΔG||F > 0

⇒ 1
1−||G0||F

≤ 1
1−||G||F −||ΔG||F

Therefore, we have (33).

Note that the restriction (34) is reasonable as G can be linearly scaled26 such that ||G||F is small enough to qualify Eq. (34).

The following theorem provides bounds on total perturbation based on this lemma.

Theorem 1. εi and E can be bounded as follows

εi = (||ΔGsss0i ||2+ ||gggi−ggg0i ||2)2 ≤ 2(||gggi−ggg0i ||22+ ||ΔG||F
1√

1−δK
(||gggi||2+ ||gggi−ggg0i ||2)2), (15)

E = ||ΔSG+ΔS||F ≈ E (1) = (1+ ||G||F)γ (13)

and

E = ||ΔSG+ΔS||F ≤ E (2) (14)

where E (2) = (1+ ||G||F) ||ΔG||F
(1−||G||F−||ΔG||F )(1−||G||F ) .

Proof. Apply the Lemma 2 of Herman & Strohmer35 to Φ0 = G0+ I and K - sparse vector sss0i , we have

||(G0+ I)sss0i ||2 ≥
�
1−δK ||sss0i ||2.
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Also, by applying the Cauchy Schwarz inequality, we have ||ΔGsss0i ||2 ≤ ||ΔG||F ||sss0i ||2. Therefore,

||ΔGsss0i ||2
||(G0+ I)sss0i ||2

≤ ||ΔG||F ||sss0i ||2√
1−δK ||sss0i ||2

⇒ ||ΔGsss0i ||2
||(G0+ I)sss0i ||2

≤ ||ΔG||F√
1−δK

⇒ ||ΔGsss0i ||2 ≤ ||ΔG||F√
1−δK

||ggg0i ||2

As a result,

2(||ΔGsss0i ||22+ ||gggi−ggg0i ||22) ≤ 2

�� ||ΔG||F√
1−δK

||ggg0i ||2
�2

+ ||gggi−ggg0i ||22

�

≤ 2

�� ||ΔG||F√
1−δK

(||gggi||2+ ||δgggi||2
�2

+ ||gggi−ggg0i ||22

�

On the other hand,

2(||ΔGsss0i ||22+ ||gggi−ggg0i ||22)≥ (||ΔGsss0i ||2+ ||gggi−ggg0i ||2)2

Therefore, we have (15).

Proof of (13):

||ΔSG+ΔS||F ≤ ||ΔSG||F + ||ΔS||F

≤ ||ΔS||F ||G||F + ||ΔS||F

≈ γ(1+ ||G||F)

as

||ΔS||F ≈ γ, (37)

according to.27

Proof of (14):

||ΔSG+ΔS||F ≤ ||ΔS||F ||G||F + ||ΔS||F

≤ (1+ ||G||F)
||ΔG||F

(1−||G||F −||ΔG||F)(1−||G||F)

Next we show that S∗ obtained based on the foregoing results is a good approximation of S0.
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Theorem 2. 35 Assume that sss0i is the sparsest solution of the Problem (10) and

δ2K <

√
2

(1+ ε(2K)Φ0 )2
−1,

there exists positive constants C0,C1 such that

||sss∗i − sss0i ||2 ≤
C0√
K
||sss0i − sss(K)i ||2+C1εi (38)

where sss∗i is solution of the �1-min problem (10).

Proof. This is a direct application of Theorem 2 in Herman & Strohmer35 with xxx= sss0i , b̂bb= gggi,zzz
∗ = sss∗i , Â= G+ I. Note that

C0,C1 are constants depending on ε(2K)Φ0 .

When the true solution sss0i has at most K nonzero elements, the result Eq. (38) can be further simplified as follows.

Corollary 1. When sss0i has at most K nonzero elements,

||sss∗i − sss0i ||2 ≤C1εi. (39)

Proof. When sss0i is a K - sparse vector, sss0i = sss(K)i . Eq. (38) becomes Eq. (39).

The assumption in this corollary is reasonable since most of real world networks tend to be sparse. The results in Eqs. (38,39)

are formulated for each row of S0. In terms of the whole matrix, the robustness of computing S0 can be guaranteed by the

following theorem.

Theorem 3. Let S∗ be the solution of the �1-min formulation (9). The error when approximating S0 by S∗ is bounded by

||S∗ −S0||2F ≤C1E (40)

where E is bounded as E ≤2
�

1
1−δK

||G0||2F +1
�
||ΔG||2F .

Proof. Apply the Corollary 1 to the Problem 10 with εi = 2
�
||ΔG||F 1√

1−δK
||ggg0i ||2

�2

+2||gggi−ggg0i ||22 we have

||sss∗i − sss0i ||22 ≤ 2C1

�
||ΔG||F

1√
1−δK

||ggg0i ||2
�2

+2C1||gggi−ggg0i ||22

⇒
n

∑
i=1

||sss∗i − sss0i ||22 ≤ 2C1

n

∑
i=1

�
||ΔG||F

1√
1−δK

||ggg0i ||2
�2

+2C1

n

∑
i=1

||gggi−ggg0i ||22

= 2C1

�
||ΔG||F

1√
1−δK

�2 n

∑
i=1

�
||ggg0i ||2

�2
+2C1

n

∑
i=1

||gggi−ggg0i ||22

⇒ ||S∗ −S0||2F ≤ 2C1

�
||ΔG||F

1√
1−δK

�2

||G0||2F +2C1||ΔG||2F .
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Theorems 2, 3 and Corollary 1 taken together guarantee that inference error when estimating S0 by S∗ is at most linear with

total perturbation noise. This observation is further verified using numerical investigations presented in the first case study.

Proposition 1. Let Ĝ(1), ..., Ĝ(N) be N different measurements or estimates of the total influence matrix G0. Let Ŝ(r) be the

direct influence matrix computed from Ĝ(r) using different methods, including ND and �1-min approach with different bounds.

If Var(Ŝ(r)) are bounded then E||S̄(N)−S0||2 → 0 as N → ∞, where S̄(N) = 1
N ∑N

r=1 Ŝ
(r).

Proof. Under perfect reconstruction per ND, Ŝ= S0+ΔS∗ satisfies

Ŝ(G0+ΔG+ I) = (G0+ΔG)

For the rth realization of ΔG, we have

Ŝr(G0+ΔGr+ I) = (G0+ΔGr)

⇒ Ŝr = (G0+ΔGr)(G0+ΔGr+ I)−1

As ΔGr are independent, Ŝr are independent.

Var(S̄(N)−S0) = Var(
∑N
r=1 Ŝr
N

−S0)

= Var(
∑N
r=1(Ŝr−S0)

N
)

=
1
N2Var(

N

∑
r=1

(Ŝr−S0))

=
1
N2

N

∑
r=1

Var(Ŝr−S0) (As Ŝr−S0 are independent)

If Var(Ŝr−S0) is bounded by some constantC for all r,

Var(S̄(N)−S0)≤ 1
N2

N

∑
r=1

C =
C
N

→ 0 as N → ∞

Theoretical results in the Section “Network inference when the time series under transient conditions are

available (total influence matrix not given)”

The errors in the estimation of R,Γ can be expressed based on the following lemma
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Lemma 2.

(ΔR)ik(t) = (e(1)ik (t)− e(2)ik (t))/Δpk

(ΔΓ)ik(t) =
[(e(1)ik (t+Δt)− e(2)ik (t+Δt))− (e(1)ik (t)− e(2)ik (t))]

ΔtΔpk

where e(1)ik (t),e(2)ik (t) are the errors incurred when measuring x0i (t, pk), x
0
i (t, pk+Δpk), respectively.

Proof.

R0ik(t) ≈ (x0i (t, pk+Δpk)− x0i (t, pk))/Δpk (41)

Rik(t) ≈ ((x0i (t, pk+Δpk)+ e(2)ik (t))− (x0i (t, pk)+ e(1)ik (t)))/Δpk

= ((x0i (t, pk+Δpk)− x0i (t, pk))+(e(2)ik (t)− e(1)ik (t)))/Δpk

≈ R0ik(t)+(e(2)ik (t)− e(1)ik (t))/Δpk

ΔRik(t) = (e(2)ik (t)− e(1)ik (t))/Δpk

Γik(t) ≈ (Rik(t+Δt)−Rik(t))/Δt

=
�
R0ik(t+Δt)+(e(2)ik (t+Δt)− e(1)ik (t+Δt))/Δpk

�
/Δt−

�
R0ik(t)+(e(2)ik (t)− e(1)ik (t))/Δpk

�
/Δt

=
�
R0ik(t+Δt)−R0ik(t)

�
/Δt+

�
(e(2)ik (t+Δt)− e(1)ik (t+Δt))− (e(2)ik (t)− e(1)ik (t))

�
/(ΔtΔpk)

= Γ0
ik(t)+

�
(e(2)ik (t+Δt)− e(1)ik (t+Δt))− (e(2)ik (t)− e(1)ik (t))

�
/(ΔtΔpk)

ΔΓik(t) =
�
(e(2)ik (t+Δt)− e(1)ik (t+Δt))− (e(2)ik (t)− e(1)ik (t))

�
/(ΔtΔpk)

Based on this lemma, the total perturbation can be estimated by the following theorem.

Theorem 4. The total perturbation for the problem (21) is Γ−S0R= (ΔS)R and is bounded by the following quantity

E ≤ (||Γ||F + ||ΔΓ||F)
||R−1ΔR||F

1−||R−1ΔR||F
+ ||ΔΓ||F (23)

when ||R−1ΔR||F < 1.
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Proof.

Γ = SR

⇒ Γ = (S0+ΔS)R

⇒ Γ−S0R = (ΔS)R

(ΔS)R is called total perturbation.

We have

A−1− (A+E)−1 =
∞

∑
k=1

(−1)k+1(A−1E)kA−1 (42)

Apply (42) to A= R,E = ΔR= R0−R, we have

R−1− (R+R0−R) =
∞

∑
k=1

(−1)k+1(R−1ΔR)kR−1

Also,

Γ0 = S0R0 (43)

⇒ S0 = Γ0(R0)−1 (44)

S = ΓR−1 (45)

⇒ ΔS = ΓR−1−Γ0(R0)−1 (46)

= (Γ0+ΔΓ)R−1−Γ0(R0)−1 (47)

= Γ0(R−1− (R0)−1)+ΔΓR−1 (48)

= (Γ−ΔΓ)(R−1− (R0)−1)+ΔΓR−1 (49)

(ΔS)R = ((Γ−ΔΓ)(R−1− (R0)−1)+ΔΓR−1)R (50)

= (Γ−ΔΓ)(R−1− (R0)−1)R+ΔΓ (51)
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Therefore,

(ΔS)R= (Γ−ΔΓ)(R−1− (R0)−1)R+ΔΓ

= (Γ−ΔΓ)(
∞

∑
k=1

(−1)k+1(R−1ΔR)kR−1)R+ΔΓ (if ||R−1ΔR||F < 1)

||(ΔS)R||F ≤ (||Γ||F + ||ΔΓ||F)(
∞

∑
k=1

(||R−1ΔR||F)k)+ ||ΔΓ||F

= (||Γ||F + ||ΔΓ||F)
||R−1ΔR||F

1−||R−1ΔR||F
+ ||ΔΓ||F

Similar to Theorem 4, the total perturbation εi for the problem (22) can be estimated using the following theorem.

Theorem 5. εi can be bounded as follows:

εi = ||((ΔS)R)�i|| ≤
||R−1ΔR||F

1−||R−1ΔR||F
��[(Γ−ΔΓ)�]i

��+
��(ΔΓ�)i

�� (24)

or

εi = ||((ΔS)R)�i|| ≈ ||R−1ΔR||
��[(Γ−ΔΓ)�]i

��+
��(ΔΓ�)i

�� (25)

The following proposition suggests that the network structure can be estimated via an averaging procedure along the lines of

Proposition 1.

Proposition 2. Let Γ̂(tr),(r = 1..N) be a measurement or approximation of the total influence matrix Γ0(t) at time tr. Let Ŝ(tr)

be the direct influence matrix computed from Γ̂(tr) using different methods, including ND or �1-min formulation with different

bounds and S̄(N) = 1
N ∑N

r=1 Ŝ(tr). Then ∀(i, j) satisfying s0i j(t) = 0,∀t, E|S̄(N)i j |2 → 0 as N → ∞.

Proof. Under perfect reconstruction per ND, Ŝ= S0+ΔS satisfies

ŜR= Γ

For the rth realization of ΔΓr, ΔRr, we have

Ŝ(tr)(R0+ΔRr) = Γ0
r +ΔΓr

⇒ Ŝ(tr) = (Γ0
r +ΔΓr)(R0(tr)+ΔRr)−1 (52)
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As (ΔΓr1 ,ΔRr1) and (ΔΓr2 ,ΔRr2) are independent if r1 �= r2, Ŝr1 and Ŝr2 are independent. Therefore,

Var((S̄(N))i j) =
1
N2Var(

N

∑
r=1

(Ŝ(tr))i j) =
1
N2

N

∑
r=1

Var((Ŝ(tr))i j)

Assume that Var((Ŝ(tr))i j) are bounded by a constantC, for all r,

Var((S̄(N))i j) ≤ 1
N2NC =

C
N

⇒Var((S̄(N))i j) → 0 as N → ∞.
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