
Supplementary Note 1: MEM, Gene recommender, meta-
data set correlation algorithms and implementations 
Gene recommender 

Gene recommender1 is an algorithm that can retrieve relevant experiments 
based on the query, and use these experiments to retrieve query co-regulated 
genes. It performs an experiment (or sample)-level weighting rather than a data 
set-level weighting. First it merges samples from all data sets to form a meta 
matrix Yij (i = gene, j = experiment). Given the query genes, the weighting 
algorithm is based on a number of criteria such as the gene expression of the 
query genes, and the expression variance of the query in each experiment. The 
original matrix Yij of n genes by p experiments (or samples) is transformed to 
ranks Yij´, where  

 

Rij is the rank of i among Yij for j = 1…p, and pi is the number of experiments 
containing gene i. The experiment scoring is calculated as: 

 

where avg(YQj) is the average expression (Yij´) over query genes Q in j, VQj is the 
variance of the query in j, kj is the number of genes in j. This scoring prefers 
experiments with a tight clustering of the query genes with high expression, low 
variance. In order to use the experiment scoring to return query-coregulated 
genes, a threshold ε defines the number of relevant experiments (with top 
scores), so the final score of gene i is calculated as: Si = the mean of 
(avg(YQj)×Yij´) over all relevant experiments j. The parameter ε is set at 0.05 (or 
5% of the total experiments).  

MEM 

The MEM algorithm2,3 assumes that the query is a single gene q. For each data 
set j, it first transforms the correlations containing the query gene into ranks, so 
that each gene has a rank n that represents the n-th correlated gene to the 
query. Ranks are normalized to [0, 1] by dividing each rank by the maximal rank 
in each data set. Then, the ranks are transformed so that for each gene gi, we 
generate a rank vector r(q, gi) = [ r1

i, …, rm
i ], where rj 

i is the position of gi in the 
query on data set j, and m is the number of data sets. MEM assumes a null 
hypothesis where in a model rank-list the genes are randomly permuted, and r(q, 
gi) contains uniformly distributed ranks. It reorders r(q, gi) in order to obtain a 
vector of order statistics, r(1)

i, …, r(m)
i where r(1)

i is the smallest, and r(m)
i is the 

largest value in r(q, gi). Assuming null hypothesis, it then calculates the 



probability from binomial distribution, that the order statistic r ´(k)
i  is smaller or 

equal to r(k)
i, where r ´(k)

i < r(k)
i is generated by null model:  

 

The score of each gene is then the p-value: 

p(gi) = min b(k) for each k in the range [0, m]. 

Intuitively, if the rank vector of a gene contains a large number of small ranks 
(which means that the gene is consistently correlated to the query in large 
number of data sets), the distribution of r(q, gi) will be heavily biased towards the 
small values and different from the uniform distribution. 

Meta-data set correlation 

Meta-data set correlation is a simple approach for combining data sets. First, 
data sets are concatenated into one matrix, called meta-data set. Then, genes 
were ranked according to the average of Pearson correlations to the query genes 
in the meta-data set. As data sets may include different sets of genes, we 
calculated correlation only for pairs of genes where each gene in the pair is 
present in at least 50% of the data sets, yielding a reasonable set of 17,689 
genes being ranked. Where the data set coverage of two genes differs, we chose 
the entire set of samples with values present for both genes in the matrix for 
computing their correlation. 

 

Supplementary Note 2: Hedgehog (Hh) query – detailed 
analysis of the retrieved genes 
Below we describe additional details of the top retrieved genes for the Hh 
pathway example described in the manuscript.  The known Hh pathway 
members SMO (rank 1), HHIP (rank 6), BOC (rank 7), and PTCH2 (rank 9) are 
all among the top 10 SEEK-retrieved genes, and KIF7 is ranked 22 – all in the 
first view immediately available to the biologist running SEEK. Other Hh-
associated genes are also retrieved with top ranks. Multiple studies show that the 
TGF-beta pathway genes RGMA (rank 2), LTBP4 (rank 8) are significantly co-
induced with GLI1 and GLI2 in recurrent tumors 4,5. The ortholog of protocadherin 
18 (PCDH18, rank 3) interacts with DAB1, which functions in concert with the Hh 
pathway to control retina development 6. FZD7 (rank 4) is an important receptor 
in the Wnt pathway that extensively cross-talks with the Hh pathway 7. The Notch 
signaling protein HEYL (rank 15) regulates HES1, which directly modulates Gli1 
expression and Hh signaling 8,9. HHIP-AS1 (rank 20) encodes the antisense RNA 
of the Hh interacting protein HHIP, which is a vertebrate-specific inhibitor of Hh 
signaling 10. Many others genes among the top 25 retrieved – KIF26A (rank 10), 



CRMP1 (rank 11), CCDC8 (rank 13), SLC26A10 (rank 14), RUNX1T1 (rank 17), 
MRAP2 (rank 18), GPR124 (rank 19), and PCYT1B (rank 21) – have literature 
evidence for either regulatory interactions (direct or indirect), or pathway-level 
cross-talk with members of the Hh signaling pathway. 

 

Supplementary Note 3: Web interface 
SEEK has been implemented as an interactive, easy-to-use website that allows 
biologists to perform queries, view expression patterns of the retrieved co-
expressed genes, and perform visualization-based analyses. The goal of the 
SEEK web interface is to offer a Google-like engine for expression and co-
expression retrieval, enabling biomedical researchers to fully utilize the 
thousands of expression data sets for accomplishing their analyses with a 
focused yet flexible and interactive web-based system. The web interface offers 
three flexible modes of visualizing users’ results: expression view, co-
expression view, and condition-specific view.  

Expression view is the first view that the user sees upon completion of their 
search. Fig. 2a (main text) shows an example. The top 100 co-expressed genes 
are shown for the query GLI1, GLI2, and PTCH1 (the user can easily see other 
lower-ranked genes of interest). The data sets are displayed in order of 
relevance, allowing the user to focus on those most related to their area of 
interest based on query co-expressions. In this view, expression levels for each 
gene are displayed, and a score is provided for each gene that conveys its level 
of normalized, hubbiness-corrected, and weighted co-expression to the query. A 
weight is provided for each data set, which offers a measure of the co-expression 
between the query genes in that data set as an indication of data set relevance. 
Each page juxtaposes multiple data sets’ expression matrices to allow quick 
comparison and navigation. Within each data set’s expression matrix, SEEK 
hierarchically clusters the conditions in the data set according to expression of 
the retrieved genes that are shown to the user. This clustering provides a quick 
visualization for identifying up- and down-regulation pertinent to the query genes. 

Condition-specific view (Fig 1 of this note) is activated by clicking on the 
expression pattern of a gene in a particular data set. This view allows users to 
associate co-expressed genes with the meta-information (or measured outcome) 
attached to the data set, such as disease state, cell type, cell line, drug 
treatment, and patient characteristics. Users can choose among the data set’s 
available attributes, and re-cluster the selected data set based on an attribute of 
interest. For example, by selecting the attribute “anatomical sites” for a 
Hedgehog related data set, and viewing the Hedgehog genes in the context of 
anatomical sites, they can observe that Hedgehog signaling is abundant in testis 
and pancreas, but not in lymph node tissues (Fig 1 of this note). Thus, potential 
associations to various measured outcomes can be readily uncovered post-
search through the condition-specific view. 



SEEK’s co-expression view (Fig 2 of this note) provides a “bird’s-eye” view of 
the co-expression landscape across up to 50 data sets at a time. Users can 
readily identify the data sets that are most relevant for the query, based on the 
co-expression of each retrieved gene to the query visualized as single columns. 
Users can readily assess the contribution of each data set. This view also serves 
to visually analyze the query coherence (Fig 2 of this note, top heat-map), 
helping users in constructing a coherent query gene set, which in turn guides 
SEEK in producing more relevant results.  

 

Fig 1 of Supplementary Note 3: Condition-specific view. This zoom-in view is 
generated by clicking on the row corresponding to SMO and GSE12630 data set in the 
result page of the GLI1, GLI2, PTCH1 query. 

 



Fig 2 of Supplementary Note 3: Co-expression view. Top heat map: query coherence, 
measured by the degree to which each query gene correlates with the rest of the query 
across the top 50 data sets. Each column represents a data set. Any “outlier” genes can 
thus be identified and subsequently removed from the query. 

 

Downstream analyses – Refine Search 

An important feature of SEEK is providing the user with flexible search 
refinement options (Fig 3 of this note). Although the SEEK algorithm enables 
robust search over the whole expression compendium, there are cases when 
users intend to restrict the search domain to a subset of data sets, for instance, 
when they desire a tissue- or disease-oriented co-expression analysis, or when 
the user encounters a situation when her query is too small or heterogeneous, 
and the intended context is not readily identifiable from the query alone. The 
Refine Search function provides users with several ways of refining the search 
analysis. Users may narrow their results down by: 

1) Limiting to a tissue or disease of interest. There are currently hundreds of 
selectable tissues, cell-types, and diseases defined by UMLS and BRENDA 
keywords. 

2) Limiting the search to only cancer or non-cancer data sets. The cancer data 
compendium includes primary tumors, metastasized tumors, and cancer cell 
lines. The non-cancer compendium includes diverse non-cancer samples, 
including stem cells, muscle and adipose cells, neurodegenerative, immune and 
infectious disease samples, epithelial and endothelial cell types, and blood cell 
types in non-cancerous diseases. 

3) Limiting to multi-tissue profiling data sets only. This group of 13 data sets is 
useful for checking the expression of gene(s) across normal tissues, cell lines, 
cell types, and diseased tissues from various organs.  

4) Limiting to primary tumor data sets only. Users can select the 224 TCGA 
RNASeq data sets as well as around 200 data sets from independent research 
studies that profile single-tissue tumors in each data set. 

SEEK provides users with an easy-to-use and easily searchable data set-type 
selector (Fig 3 of this note). After a category has been selected, SEEK will 
perform the data set prioritization and co-expressed gene search within the 
chosen category of data sets only. 



 

Fig 3 of Supplementary Note 3: Available options within the Refine Search window. 
The second column lists the number of data sets in each data set category. 

 

Supplementary Note 4: Batch effect evaluation 
SEEK uses the data set weighting algorithm to systematically address the 
challenge of the possible batch effects that exist in certain data sets in the 
compendium. To evaluate SEEK’s effectiveness, we identified low quality data 
sets with severe batch effects in the compendium based on the variation in the 
samples’ expression value distribution within each data set. Specifically, for each 
data set d, with dn samples, we calculate the standard deviation σd 

 
 
where d1, …, dn are the samples in data set d, and IQR is the interquartile range 
for the expression values in a sample dx. A relatively high σd signifies a technical 
bias or a shift in the median and IQR of the gene expression values in that array, 



which is generally caused by batch effects. We then examined the 100 datasets 
with the highest σd (and thus most severe batch effects) in the compendium to 
see where they are ranked in full dataset prioritization (~4,500 data sets) for 121 
diverse GO-slim queries (GO-slim11 provides a curated set of diverse, high-level 
GO terms that are nonetheless specific enough for experimental evaluation and 
span the full set of GO biological processes). There was indeed a negative 
enrichment of the 100 data sets in full data prioritizations across 121 GO slim 
queries (Supplementary Fig. 7), indicating that data sets with substantial batch 
effects are systematically ranked lower than randomly selected data sets, and 
thus effectively down-weighed in the SEEK search process. In fact, a high 
proportion (84%) of these 100 low quality data sets have a non-significant data 
set weight assigned by SEEK (at P more than the 0.001 significance cut off) 
(Supplementary Fig. 7, source data), thus demonstrating the effectiveness of 
the SEEK data set weighting algorithm in automatically handling low-quality data 
sets. 

 

Supplementary Note 5: Raw data processing and 
normalization 
Each microarray platform had a relatively accepted pipeline for processing its 
data sets. Briefly, for Affymetrix platforms, we normalized each array using 
Robust Multi-array Average (RMA) 12, which ensures that the distribution of 
expression values per array is the same within each data set. We note that SEEK 
also performs similarly well for data sets processed with other techniques, such 
as MAS5. For Agilent, there are two types of arrays: single-channel and dual-
channel arrays. Dual channel arrays are designed for measuring fold-change 
between case and control conditions. In dual-channel arrays, individual arrays 
are normalized by loess normalization (Zahurak et al13).  Next, we calculated the 
log-2 Cy3 over Cy5 fold change and applied between-array normalization, which 
is essential in two color array analysis, as it normalizes channel intensities and 
log-ratios to be comparable across arrays. Single-channel arrays were 
normalized by within-data set quantile normalizations. The above analysis was 
done using the Bioconductor R and limma package14 following the guide in 
Chapter 6 in the limma manual15. For Illumina BeadChip platforms, we limit to the 
set of data sets that have no missing probe measurements, termed 
“unnormalized” raw data obtained from the Gene Expression Omnibus. We 
normalized the arrays using quantile normalization 16 as this is the recommended 
approach in the study Ritchie et al17. This use of consistent processing pipeline 
across all data sets within a given platform helps remove systematic differences 
between data sets18.  

For data sets from the RNA sequencing platforms, we obtained 5,085 RNASeq 
samples that were pre-processed level-3 data from TCGA 19. Discussion of the 
processing is found in 20,21. On a high level, for these TCGA samples, we use 
normalized counts, which are the raw counts divided by the 75th percentile of 



each column multiplied by 1000 (known as the upper-quartile normalization22). 
TCGA samples have been split into 224 data sets according to unique ‘disease 
type, sample source’ pairs. We also extracted 54 RNASeq data sets from GEO 
that have been processed by submitters of the data sets. These data sets have 
been published in their associated studies (Supplementary Data 4), where the 
processing of each data set is discussed. We use results summarized in raw 
counts format, and we further performed upper-quartile normalization on counts 
data to be consistent with the TCGA samples. Final measurements are 
normalized by log2(1+normalized_counts). 

The gene expression data sets normalized using the abovementioned procedure 
are publicly available for download on the SEEK website. 

 

Supplementary Note 6: Search algorithm pseudocode 
The SEEK search algorithm is a general search algorithm that works to integrate 
co-expressions from diverse data sets across platforms, and tackles the problem 
of incomplete gene ranking that arises from the diverse gene coverage across 
data sets. The algorithm is described in the following pseudocode: 

Input: query genes (𝑄), genes in genome (𝐺), data sets (𝐷), correlation z-scores 
for pairs containing 𝑄 across data sets (𝑧𝑑(𝑔, 𝑞),𝑔 ∈ 𝐺, 𝑞 ∈ 𝑄,𝑑 ∈ 𝐷). 

Variables: 𝑀𝑔,𝑑, matrix of gene scores across 𝐷; 𝑐𝑜𝑢𝑛𝑡𝑔, vector of coverage of 
genes; 𝑤𝑑, vector of data set weight; 𝐹𝑔, vector of final gene scores.  

Constants: 𝛼, 𝛽, 𝜃. 

Begin: 

Compute �̃�𝑑(𝑔, 𝑞) for each 𝑔, 𝑞, and 𝑑, as described in Eq. 1 (Methods). 
//Hubbiness control 

Initialize 𝑀𝑔,𝑑 = 0 for all 𝑔,𝑑; 𝑐𝑜𝑢𝑛𝑡𝑔 = 0 for all 𝑔; 𝑤𝑑 = 0 for all 𝑑. 

For each data set 𝑑:   //Data set weighting 

 Let 𝑉 = set of genes that 𝑑 contains 

 If |𝑉| < 𝜶 or |𝑉⋂𝑄| < 𝜷:    //not enough genes, or query genes present 

continue     

 Compute 𝑤𝑑 as described in Eq. 2 (Methods). 

𝑀𝑔,𝑑 = ∑ �̃�𝑑(𝑔, 𝑞)/|𝑉 ∩ 𝑄|𝑞∈𝑉∩𝑄 , for each gene 𝑔 ∈ 𝑉 

𝑐𝑜𝑢𝑛𝑡𝑔 = 𝑐𝑜𝑢𝑛𝑡𝑔 + 1, for each gene 𝑔 ∈ 𝑉 



End for 

For each 𝑔 in 𝐺:    //Gene scoring 

 If 𝑐𝑜𝑢𝑛𝑡𝑔 > 𝜽: //sufficient data set coverage for 𝑔 

  Let 𝑈 = set of data sets that contain 𝑔 

  𝐹𝑔 = 1
∑ 𝑤𝑑𝑑∈𝑈

∑ 𝑤𝑑 × 𝑀𝑔,𝑑𝑑∈𝑈   

Else: 

 𝐹𝑔  =  −𝑖𝑛𝑓 

End if 

End for 

Sort 𝐹 based on decreasing score, generate gene ranking (𝑅𝐺) 

Sort 𝑤 based on decreasing weight, generate data set ranking (𝑅𝐷) 

Return 𝑅𝐺 and 𝑅𝐷 

End 

The three thresholds 𝛼,𝛽,𝜃 are designed to maximize data utilization while 
keeping in check the biases introduced by incomplete data. 𝛼 is the minimum 
number of genes required to be present in a data set. 𝛽 is the minimum number 
of query genes that have to be measured in a data set, and 𝜃 is the minimum 
number of data sets required to contain a gene to include the gene in search 
ranking. Based on our experience, the following thresholds provide robust 
performance for a variety of queries and for large compendia with diverse data 
sets: 𝛼 = 10,000, 𝛽 = 2, 𝜃 = 0.5|𝐷𝑤| where 𝐷𝑤 ⊆ 𝐷 is the set of weighted data 
sets for the given query. 
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