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S1 Notations and Definitions
Let “m” denote the number of genes in the data that has gene expressions for each

gene on “p” categories (tumor sizes and normal tissue). Let µij denote the mean

response corresponding to the i-th category in j-th gene, i = 1, ..., p, j = 1, ...,m.

The problem of biological interest we discuss in the context of uterine fibroid data is

to detect genes that are differentially expressed in a tumor size category compared

to normal sample. Thus, if the last category, “p”, corresponds to normal sample, we

need to test the pairwise differences θij = µij−µpj , i = 1, 2, ..., q and j = 1, 2, ...,m,

are equal to zero, where, q = p−1. For each gene j, the pairwise null and alternative

hypotheses are,

Hj
0i : θij = 0 against Hj

1i : θij 6= 0, i = 1, . . . , q. (S1)

For each gene j, we have a vector of parameters θj = (θ1j , θ2j , ..., θqj). We first need

to find out the genes that are differentially expressed in at least one tumor sample

compared to normal samples. Thus, we define the null and alternative “screening

hypotheses” to test the significance of each gene as,

Hj
0screen : θj = 0 against Hj

1screen : θj 6= 0, j = 1, . . . ,m, (S2)

for testing whether all parameters θij , i = 1, ..., q are simultaneously 0 or not,

equivalently, whether all µij , i = 1, ..., p are equal or not. These hypotheses give

rise to m families of hypotheses corresponding to m genes with each family hav-

ing a screening hypothesis and“q” pairwise hypotheses. Figure S1 shows a simple

graphical representation of the structure of hypotheses in our formulation.

Let xkij denote the kth observed gene expressions of the jth gene in ith group,

k = 1, . . . , ni with ni being the sample size for ith group, j = 1, . . . ,m, i = 1, . . . , p.

Let Tij and Pij , i = 1, . . . , q, j = 1, . . . ,m, denote the test statistics and the

p-values respectively for testing Hj
0i. The test statistics for testing the screening

hypotheses Hj
0screen are obtained as a function of Tij , i = 1, . . . , q, for instance,

the highest order statistic of Tij , i = 1, . . . , q. We denote the p-values for testing

screening hypotheses as P jscreen. For each family j we denote a vector of p-values,

Pj = (P1j , P2j , ..., Pqj) based on the test statistics Tj = (T1j , T2j , ..., Tqj), for testing

the pairwise hypotheses in (S1). If Hj
0i is rejected we conclude on direction, i.e.,

declare θij > 0 if Tij > 0 or declare θij < 0 if Tij < 0.

Given the screening p-values P jscreen, for every j = 1, 2, ...,m, to carry out the si-

multaneous testing of the screening hypotheses in (S2), we use the BH-procedure [1],

that controls the FDR at a given level α. This is a step-up procedure as follows: given

the ordered screening p-values Pscreen(1) ≤ Pscreen(2) ≤ · · · ≤ Pscreen(m) and the

corresponding screening null hypotheses H0screen(1), H0screen(2), ...,H0screen(m),
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find,R = max {1 ≤ j ≤ m : Pscreen(j) ≤ jα/m} and rejectH0screen(1), . . . ,H0screen(R),

provided the maximum exists, otherwise, accept all the screening hypotheses.

When an Hj
0screen : θj = 0 is rejected, further decisions are made on the pairwise

hypotheses in (S1) and on rejection, directional decisions are made on the signs of

the component θij . A Type I error might occur due to wrongly rejecting Hj
0screen

or correctly rejecting Hj
0screen but wrongly rejecting Hj

0i for some i = 1, . . . , q. A

Type II error might occur due to failing to reject a false null hypothesis Hj
0screen

or correctly rejecting a false Hj
0screen but failing to reject a false null pairwise

hypothesis Hj
0i for some i = 1, . . . , q. A directional error (Type III error) might

occur due to correctly rejecting Hj
0screen but wrong assignment of the sign of θij

while correctly rejecting Hj
0i : θij = 0. The general practice in any multiple testing

problem is to find a procedure that controls the Type I errors and minimizes the

Type II errors. Here, we need to control Type I as well as Type III errors. A practical

way of doing that would be to use an error rate combining both Type I and Type

III errors in the FDR framework and make sure that it is controlled.

An error rate that combines Type I errors and Type III errors in FWER setup

is mdFWER [2, 3], which is the probability of making at least one Type I error or

Directional error. Heller et al. [4] used the Overall False Discovery Rate (OFDR),

which is the expected proportion of falsely discovered gene sets out of all discovered

gene sets, as an appropriate error measure to control, in their two-stage procedure

for identifying differentially expressed genes and gene sets. The concept of OFDR

was introduced by Benjamini and Heller [5] in the context of testing partial con-

junction hypotheses. Inspired by Heller et al. [4] and Shaffer [2], Guo et al. [6] define

the mixed directional False Discovery Rate (mdFDR) defined below.

Let V (j) denote the indicator function of at least one Type I error or Directional

Error committed while testing family j and the pairwise hypotheses in it, i.e., V (j) is

1 if either Hj
0screen is falsely rejected or Hj

0screen is correctly rejected but at least one

Type I error or Directional error occurs while testing pairwise hypotheses in the fam-

ily j; V (j) is 0 otherwise. Let, R denote the number of screening hypotheses rejected

by a multiple testing procedure, that is, R = max {1 ≤ j ≤ m : Pscreen(j) ≤ jα/m}.
Then, mdFDR is formally defined as follows.

Definition 1: mdFDR - mixed directional False Discovery Rate. The expected

proportion of Type I and Directional errors among all discovered families,

mdFDR = E

[∑m
j=1 V (j)

max(R, 1)

]
. (S3)

S2 Proof of Theorem 1
Proof Let, I0 denote the set of true null screening hypotheses Hj

0screen and I1
denote set of false Hj

0screen with |I0| = m0 and |I1| = m1, m0 + m1 = m. From

definition of mdFDR,

mdFDR = E(Q) = E

[∑m
j=1 V (j)

max(R, 1)

]
. (S4)

Let, Pscreen(1) ≤ · · · ≤ Pscreen(m), denote the ordered screening p-values. In the

event that R = r, Pscreen(k) ≤ rα/m for k = 1, 2, ..., r and Pscreen(k) > (r+1)α/m
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for k = r+ 1, ...,m. Consequently, we have r number of P jscreen’s that are ≤ rα/m.

Then, (S4) can be written as,

E(Q)

=

m∑
r=1

1

r

 m∑
j=1

Pr(V (j) = 1, R = r)


=

m∑
r=1

∑
j∈I0

1

r
Pr
(
P jscreen ≤

rα

m
, R(−j) = r − 1

)
+

m∑
r=1

∑
j∈I1

1

r
Pr
(
P jscreen ≤

rα

m
,Type I or

Type III error at j, R(−j) = r − 1
)
. (S5)

where, R(−j) denotes the number of screening hypotheses rejected from the set of

(m−1) screening hypotheses {H1
0screen, H

2
0screen, ...,H

j−1
0screen, H

j+1
0screen, ...,H

m
0screen}

by using the step-up procedure with the critical values (i+1)α/m, i = 1, . . . ,m−1.

First consider the second term in (S5). By the assumption of independence of

p-value vectors we can write it as follows:

m∑
r=1

∑
j∈I1

1

r
Pr
(
P jscreen ≤

rα

m
,Type I or Type III error at j

)
· Pr

(
R(−j) = r − 1

)
≤

m∑
r=1

∑
j∈I1

1

r

rα

m
Pr
(
R(−j) = r − 1

)
(S6)

=
m1α

m
. (S7)

The inequality in (S6) follows as we use an mdFWER controlling procedure at level

(rα/m) for each significant family and as j ∈ I1, the probability of making at least

one Type I error or directional error in family j is ≤ rα/m. Summing over all values

of r, the equality in (S7) follows by noting that
∑m
r=1 Pr

(
R(−j) = r − 1

)
= 1.

Next consider the first term in (S5). By the assumption of independence of p-value

vectors we can write it as follows:

m∑
r=1

∑
j∈I0

1

r
Pr
(
P jscreen ≤

rα

m

)
· Pr

(
R(−j) = r − 1

)
≤

m∑
r=1

∑
j∈I0

1

r

rα

m
Pr
(
R(−j) = r − 1

)
(S8)

=
m0α

m
. (S9)

The inequality in (S8) follows due to the fact that the true null p-values are stochas-

tically larger than or equal to U(0, 1). Summing over all values of r, the equality
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in (S9) follows by noting that
∑m
r=1 Pr

(
R(−j) = r − 1

)
= 1. The result follows by

combining (S7) and (S9). �

In the theorem we only assume that the p-value vectors are independent and

we do not discuss about the component pairwise p-values. This implies that the

p-values within a gene across tumor samples may have any dependence structure.

The mdFWER controlling procedure used will tell us under what kind of depen-

dence structures of p-values within genes is the procedure valid. For example, if we

use Holm’s mdFWER controlling procedure, which is proved to control the md-

FWER when the p-values are independent, then this theorem is valid under the

additional assumption that the pairwise p-values Pij , i = 1, 2, . . . , q of a vector Pj

are independent.

The generality of this algorithm makes it a flexible procedure to apply to sev-

eral practical situations where multidimensional directional decisions are required

to make. Although, in the paper, we discuss testing of differential gene expression

in each tumor size against the normal sample for each gene, this procedure can

be applied to any type of pairwise comparison desired to be tested for each gene.

For example, if it is of interest to group genes by the inequalities among the mean

responses, we would want to detect the pattern of mean responses in the p cate-

gories, known as directional pattern, and see how the mean responses vary across

the categories. Some common inequalities are µ1j ≤ µ2j ≤ · · · ≤ µpj (monotone

pattern), µ1j ≤ · · · ≤ µij ≥ µ(i+1)j ≥ · · ·µpj (umbrella pattern with peak µij). To

test for the pattern we need to test the differences of mean response of the cate-

gories, θij = µi+1j − µij , i = 1, 2, ..., q and j = 1, 2, ...,m and q = p − 1. If the

problem of interest is testing all pairwise differences of the p categories, possibly

unordered, then q = p(p − 1)/2. Based on the question we want to answer from a

data, appropriate methodology can be developed from this general procedure.

S3 Details of Statistical Methodology for FGS Gene Expression
Data

Dunnett Pscreen for Step 1: The scenario is of comparing multiple groups with

a common control group and the standard method used in this situation is the

Dunnett test [7]. Dunnett test is a powerful method that is designed specifically

for this kind of comparison. The test assumes that the underlying distributions of

the data from the different groups have same variance and the test statistics are

obtained by using a pooled estimate of the variance. This assumption is valid for the

Uterine fibroid data as the gene expressions are normalized to have similar means

and variances for comparability. The test statistic for testing (S1) is given by,

TDunnij =
x̄ij − x̄pj

sj
√

1
ni

+ 1
np

, (S10)

where, x̄ij = (1/ni)
∑ni

k=1 x
k
ij , i = 1, . . . , p; j = 1, . . . ,m are the sample means

and s2j = (
∑p
i=1

∑ni

k=1

(
xkij − x̄ij

)2
)/ν, j = 1, . . . ,m, are the pooled sample vari-

ances, with ν = (
∑p
i=1 ni − p). The null distribution of each TDunnij is univari-

ate t-distribution with ν degrees of freedom. The vector of Dunnett test statistics

TDunn
j =

(
TDunn1j , . . . , TDunnqj

)
has a q-variate t-distribution with ν degrees of
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freedom and correlation matrix R = (ρik)q×q, where ρik are defined in Dunnett.

The Dunnett-adjusted critical value for the two sided test for
{
TDunnij , i = 1, ..., q

}
,

denoted by uα(q, ν), is the quantile of the above q-variate t-distribution such that,

Pr
(∣∣TDunn1j

∣∣ ≤ uα, ..., ∣∣TDunnqj

∣∣ ≤ uα) = 1− α

2
,

or equivalently,

Pr

(
max

{i=1,...,q}

∣∣TDunnij

∣∣ ≤ uα) = 1− α

2
.

The observed values of TDunnij , tDunnij , say, are compared to uα(q, ν) and we reject

Hj
0i if

∣∣tDunnij

∣∣ > uα(q, ν). For each gene j we have a vector of observed Dunnett test

statistics, tDunnij =
(
tDunn1j , . . . , tDunnqj

)
. Let, tmaxj = maxi=1,...,q

∣∣tDunnij

∣∣. We obtain

the screening P -value for testing the screening hypotheses (S2) as follows:

Pr

(
max

{i=1,...,q}
|Tij | > tmaxj

)
= 1− Pr

(
−tmaxj ≤ Tij ≤ tmaxj , i = 1, . . . , q

)
, (S11)

where, the probability is obtained from the CDF of q-variate t-distribution with ν

degrees of freedom and the correlation structure defined in Dunnett [7]. Let R de-

note the number of rejected screening hypotheses while applying the BH procedure

to these screening p-values.

Dunnett mdFWER controlling procedure for Steps 2-3: We use Dunnett

procedure to obtain the Dunnett-adjusted p-values, P̃ij
Dunnett

, for testing the pair-

wise hypotheses as follows,

P̃ij
Dunnett

= 2 · Pr
(

max
{i=1,...,q}

∣∣TDunnij

∣∣ ≥ tDunnij

)
. (S12)

We reject Hj
0i if the corresponding adjusted P -value P̃ij

Dunnett ≤ Rα
m and conclude

θij > 0 if TDunnij > 0 and vice versa.

S4 Supplementary Results for the Simulation Study
Methods Used in Simulation Study

In this section we describe the different mdFDR controlling methodologies used in

the simulation study. We develop methodologies by combining Dunnett screening

procedure with four different mdFWER controlling procedures for steps 2 and 3

and compare the performance of the resulting four methodologies with Guo et al.

[6] methodology in terms of mdFDR control and power.

Screening Procedure for Step 1:

Dunnett Pscreen: The Dunnett method [7, 8, 9] is a powerful method specifically

designed to test hypotheses where several treatments are compared with a common

control in an unbalanced one-way layout. The multiple pairwise comparisons we
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make with the FGS gene expression data fit into the framework of Dunnett test

[7]. The test statistics, Tij , for testing the pairwise hypotheses, are obtained as

described in [7], with details given in Section S3.

Procedures for Steps 2 and 3:

Dunnett Procedure: We obtain the Dunnett-adjusted pairwise p-values [8, 9],

to be used in Step 2 of the algorithm and call them P̃ij . The details are given in

section S3. The procedure rejects Hj
0i if P̃ij ≤ Rα

qm and conclude on sign of θij based

on the sign of the test statistic Tij .

Holm Procedure: We use Holm’s step-down procedure at level Rαm within each

significant gene. Order the pairwise p-values for each significant gene j as Pj(1) ≤
· · · ≤ Pj(q) with corresponding hypotheses denoted as Hj

0(1), ...,Hj
0(q). Let k (k =

1, . . . , q) be the maximum index such that Pj(i) ≤ Rα
m(q−i+1) for all i ≤ k, then

reject Hj
0(1), ...,Hj

0(k), conclude on direction based on the sign of the test statistic

and accept the rest of the hypotheses.

Hochberg Procedure: We use Hochberg’s step-up procedure at level Rαm within

each significant gene to identify significant categories. Let k (k = 1, . . . , q) be the

maximum index such that Pj(k) ≤ Rα
m(q−k+1) , then reject Hj(1), ...,Hj(k), con-

clude on direction based on the sign of the test statistic and accept the rest of the

hypotheses.

Bonferroni Procedure: Bonferroni procedure is a commonly used single step

multiple testing procedure that strongly controls FWER. Reject Hj
0i if Pij ≤ Rα

qm

and conclude on direction based on the sign of the test statistic Tij .

Guo et al. [6] Procedure:

The procedure of Guo et al. [6] is a special case of the general testing procedure.

They first obtain the p-values, {P1j , ..., Pqj}, for testing the pairwise hypotheses in

(S1) and use the Bonferroni pooling to obtain the screening p-values as follows:

P jscreen = q ·min {P1j , ..., Pqj} .

Note down R, the number of significant genes. For each significant gene, use the

Bonferroni procedure discussed above to identify significant pairwise differences and

conclude on direction.

Results for the Simulation Study

In this section we present the results from the simulation study that consider dif-

ferent kinds of dependencies of the gene expressions. The dependence within genes

across groups means that the gene expressions from different tumor samples are

dependent but given any two genes for a sample, the expressions are independent

between the two genes; as several tumor samples belong to same subject, this kind

of dependence structure is valid. The dependence among genes means that the gene

expressions from different genes are dependent but given any two samples for a gene,

the expressions are independent; as the genes belonging to same gene set have sim-

ilar activity, this kind of dependence structure is also valid in the FGS microarray

data.
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We define the concept of average power for the three step procedure for comparing

different methodologies that control the mdFDR at the same level. Let, R denote

the set of indices of rejected screening hypotheses Hj
0screen with |R| = R. Let,

Rj , j ∈ R denote the number of pairwise hypotheses Hj
0i rejected for each signifi-

cant gene. Let, S denote the number of false null screening hypotheses rejected and

let, Sj , j ∈ R denote the number of false null pairwise hypotheses rejected for each

discovered gene. Then, the average power for the three step procedure is defined as

follows:

Definition 2: Average Power in Three Step Procedure: The average power is defined

as the expected proportion of false null hypotheses rejected in Step 1 and Step 2

among all rejections in Step 1 and Step 2,

Average Power = E

 S +
∑
j∈R Sj

max
(
R+

∑
j∈RRj , 1

)
 . (S13)

The different mdFDR controlling procedures that are shown in the Figures 4-

6 and Figures S2-S5 are: (i) The proposed methodology (Dunnett), (ii) Dunnett

screening and Holm procedure (Holm), (iii) Dunnett screening and Hochberg pro-

cedure (Hochberg), (iv) Dunnett screening and Bonferroni procedure (Bonferroni)

and (v) Guo et al. [6] procedure.

Dependence within genes across groups.

In this case the components Zsij , i = 1, ..., p are dependent with Zsij ∼ N(µij , 1)

and have a common correlation ρ = 0.2, 0.5, 0.8. The results are summarized in

Figures 5 and Figures S2-S3. All five procedures control the mdFDR at less than

α = 0.05. Once again, as in the case of independence, the proposed method gains

in power compared to the other methods.

Dependence among genes.

We next considered the situation where gene expressions are dependent among

genes. For this simulation, the components Zsij , j = 1, ...,m are dependent with

Zsij ∼ N(µij , 1) and have a common correlation ρ = 0.2, 0.5, 0.8. The results are

summarized in Figure 6 and Figures S4-S5. Again, all five procedures control the

mdFDR at less than α = 0.05 and as in the case of independence, the proposed

method gains in power compared to the other methods.
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