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eMethods.1   Operational Definitions of Amygdala and Hippocampus ROIs.  16 
 The amygdala and hippocampus are both identified by visual inspection on subjects’ coronally oriented 17 
T1-weighted structural images as gray matter tissue in the medial temporal lobe.  The anterior boundary of 18 
the amygdala is the first coronal slice on which the anterior commissure appears.  The amygdala continues 19 
to be outlined on coronal slices moving in the posterior direction until the first slice on which the lateral 20 
horn of the temporal ventricle appears.  A horizontal line (parallel to the anterior commissure) is drawn 21 
from the most superior part of the ventricle, and amygdala continues to be identified as the medial temporal 22 
gray matter superior to this line.  The line at the most superior point of the ventricle and the amygdala 23 
continue to be drawn on successive posterior slices until the amygdala is no longer visible.  The anterior 24 
boundary of the hippocampus is defined as the first (most anterior) coronal slice on which the horizontal 25 
line superior to the ventricle is drawn.  Hippocampus is defined as the medial temporal lobe gray matter 26 
inferior to the line.  The hippocampus continues to be drawn on successive posterior slices inferior to the 27 
line where the line is identified, and posterior to the amygdala and ventricle until the hippocampus is no 28 
longer visible. 29 

 30 

eMethods.2  PET Kinetic Method 31 
 32 
To address the issues of low signal-to noise ratio of [11C] FLB457 cortical specific binding as well as the 33 
poor suitability of the cerebellum as a reference tissue, a kinetic approach utilizing a modified two tissue 34 
compartment model was applied.  In this method, the rate constant k4, and VND, the distribution volume of 35 
the nondisplaceable compartment, were fitted to a single value across regions, whereas the delivery 36 
constant K1 and the rate constant k3 were fitted in each region and condition.  The method was applied 37 
separately to the 9 cortical regions and the 5 moderate binding subcortical regions examined in the study.  38 
The reason for separating the low and moderate binding regions was the possibility that k3 and k4 estimates 39 
might be correlated, with moderate binding regions having a lower estimated value of k4 than low binding 40 
regions.  In theory, k4 is the dissociation rate of the tracer from the receptor and is independent of k3, but in 41 
reality the estimated quantities tend to be correlated, and this approach allowed for the optimization routine 42 
to converge to fitted values appropriate to the two different ranges of k3.  In the simulations, two versions 43 
of the method were compared:  One in which the same values of k4 and VND were estimated for both the 44 
baseline and post-amphetamine scan (the 2 scan method), and a second version in which k4 and VND were 45 
fitted separately for baseline and post-amphetamine (1 scan method).  To test which approach is more 46 
accurate, simulations were performed in which the model assumptions (uniform k4 and VND across 47 
regions and/or scans) were intentionally violated and estimated values of VT, BPND and their percent 48 
change across conditions were compared to the (simulated) true values.  For completeness, standard  2TC 49 
fits with all 4 rate constants fitted in each region and condition, using cerebellum as a reference tissue, were 50 
performed as well.   51 
 52 
Simulation Methods.  Each modeling assumption was tested with a set of 250 Monte Carlo simulations with 53 
9 simulated cortical regions, a simulated cerebellum, and mean decrease in BPND following amphetamine 54 
of 5%. For each of the 250 runs in a simulation, rate constants [K1, k2, k3, k4] for the baseline condition 55 
were generated as the mean observed across cortical regions in the real data, plus a Gaussian random 56 
variable with standard deviation of 10% of the mean parameter value.  Rate constants for the post-57 
amphetamine condition were set to the same value as baseline with k3 decreased across regions by uniform 58 
random variables ranging between 0 and 10% of the baseline value (mean decrease of 5%).  Pairs of arterial 59 
plasma input functions were selected randomly from among the baseline/post-amphetamine pairs of input 60 
functions in the real study data, and continuous time activity curves were generated.  These were 61 
subsampled at the mid-frame times of the collected data to generate discrete time activity curves 62 
comparable to the reconstructed PET data, and an additional layer of mean-zero noise with standard 63 
deviation equal to 2.5% of the interpolated values was added.  These data were then fitted by the 1 scan, 2 64 
scan and 2TC methods, with weighting as in the main study.  VT was computed in every case. BPND was 65 
computed as the estimated k3/k4 ratio for the 1 scan and 2 scan methods and both as k3/k4 and indirectly 66 
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using the cerebellum VT as an estimate of VND (overestimated by 20%, by design, assuming specific 67 
binding in cerebellum) for the 2TC method, for comparison.  The tested conditions were i) variability in k4 68 
across regions, ii) change in k4 between scan conditions, iii) change of VND across scan conditions and 69 
combinations of I, ii and iii.  To test i) k4 was varied across regions by a Gaussian random variable with 70 
standard deviation equal to 5% of the mean.  To test ii) k4 was varied between scans, with post-71 
amphetamine  k3 readjusted by the same amount such that the post-amphetamine decrease in BPND was 72 
preserved.  These were tested at the 5% and 10% standard deviation levels for k4, as both Gaussian and 73 
uniform random variables, with the latter representing the case in which all amphetamine effect was 74 
attributable to reduced affinity, i.e. increased k4.  To test iii),  VND was varied between scan conditions, 75 
again with a Gaussian random variable with standard deviation equal to 5% or10% of the baseline value.  76 
Finally combinations of ii and iii, i.e. simultaneous changes of both k4 and VND across conditions, were 77 
tested.    78 
 79 
Results.   Representative results are shown in Table S1.  The table shows the ordinary regression slopes and 80 
intercepts of the fitted parameters against the simulated true parameters, along with Pearson correlation 81 
coefficients, for each of the 2250 fits for a representative set of simulation conditions. The 2 scan and 1 82 
scan methods both  outperformed conventional 2TC under all conditions.  This includes BPND and 83 
∆BPND where the simulated specific binding in cerebellum could be expected to affect the outcome, but 84 
also accuracy and precision of baseline and post-amphetamine VT, where many of the tested conditions 85 
would have appeared a priori to favor the greater flexibility of 2TC (data not shown).  Under all of the 86 
tested conditions, the 2 scan method was more accurate than the 1 scan method.  Surprisingly, this included 87 
all simulations in which k4 or VND was changed across conditions, which might be expected to favor the 1 88 
scan method.  We conclude that the simulations support the 2 scan method as being the most sensitive 89 
approach for extracting ∆BPND and ∆VT using [11C]FLB457 with amphetamine challenge.     90 
 91 
Discussion.  In this study, we applied a kinetic method that would simultaneously address the low signal in 92 
cortex, the low expected change in that signal across the tested conditions, and the lack of a suitable 93 
reference tissue.  Our method fitted single values of VND and k4 across brain regions and scans for each 94 
subject.  The assumption of single VND is widely accepted, and in fact implicit in the interpretation of 95 
∆BPND as reflecting changes in specific binding only.  The use of a single k4 is less conventional, though 96 
not unique to this study 1.  There is some evidence suggesting that measured k4 may vary across regions 97 
due to differing microenvironments 2.  Additionally, on statistical grounds, data fitting algorithms could 98 
conceivably provide correlated parameter estimates, for example, estimating BPND in high binding regions 99 
by a combination of both large k3 and small k4.  The simulations here showed that even when the 100 
underlying compartment model incorporated all of these conditions that do not conform to the 2 scan model 101 
assumptions, the 2 scan method still outperformed all other methods, due to the increased parsimony 102 
associated with estimating 38 parameters per subject, rather than 40 for the 1 scan method or 80 for 2TC.  103 
One reasonable concern when applying this approach is identifiability of VND and BPND, i.e. that the 104 
partition of total distribution volume VT into its component factors VND and (1 + BPND) from direct 105 
estimation of these may not represent the true physiological parameters in the absence of additional 106 
information to formulate constraints in the data fitting process.  To address this concern, we also measured 107 
and reported total VT and ∆VT and found these to be most precisely measured by the 2 scan method as 108 
well. We expected, a priori, that ∆VT would be less than ∆BPND because a portion of VT is VND which 109 
should not be affected by DA release.  In fact, in the study data we did see that ∆VT < ∆BPND in HC, but 110 
the blunting in SCZ and significant group differences were still detectable.  As noted in the main article, 111 
average estimated VND, 2.97 ± 0.87 in SCZ and 3.27 ± 0.55, is in approximate accord with the Narendran 112 
study 3 in that cerebellum VT measured here was 4.19 ± 0.95 in SCZ and 4.56 ± 1.08 in HC, corresponding 113 
to VND equaling 70 ± 13% of cerebellum VT in SCZ and 73 ± 10% in HC.  Nevertheless, we cannot claim 114 
to have measured physiological VND by this method without further validation, for example through 115 
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blocking studies.  Our simulations do however strongly suggest that the approach improves estimation of 116 
∆VT and ∆BPND compared to methods that measure within subject regional parameters independently. 117 
 118 
 119 
  120 
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 121 
eTable.1  Simulation Results for ∆BPND and ∆VT 122 

Condition:  k4 varies within scan (Gaussian, 5% SD) across regions but not between scans 

 slope intercept R % Outliers 
∆BP 2TC indirect 1.0077 0.0083 0.0073 14% 
∆BP 2TC 1.1703 0.0270 0.0333 0.3% 
∆BP 1 scan 1.0326 0.0206 0.0405 0 
∆BP 2 scan 1.0157 0.0009 0.5106 0 
∆VT 2TC 1.1550 0.0141 0.0609 0.4% 
∆VT 1 scan 1.0234 0.0033 0.2203 0 
∆VT 2 scan 1.0084 0.0004 0.5078 0 
Condition:  k4 varies within scan (Gaussian, 5% SD) and between scans (uniform between 0 and 10%) 

 slope intercept R % Outliers 
∆BP 2TC indirect 1.1776 -0.0031 0.0104 0.3% 
∆BP 2TC 1.0388 0.0205 0.0265 0.0027 
∆BP 1 scan 1.1552 0.0249 0.0478 0 
∆BP 2 scan 1.0238 0.0203 0.4779 0 
∆VT 2TC 1.1816 0.0068 0.0699 0.1% 
∆VT 1 scan 1.0018 -0.0014 0.1920 0 
∆VT 2 scan 1.0224 0.0136 0.4781  

Condition:  VND varies between conditions (Gaussian, SD = 5%) 

 slope intercept R % Outliers 
∆BP 2TC indirect 1.1424 -0.0215 0.0109 15% 
∆BP 2TC 0.9151 0.0082 0.0222 0.1% 
∆BP 1 scan 1.1581 0.0167 0.0812 0 
∆BP 2 scan 1.0656 0.0057 0.1414 0 
∆VT 2TC 0.9993 0.0041 0.2930 0.1% 
∆VT 1 scan 0.9771 -0.0029 0.7182 0 
∆VT 2 scan 0.9626 -0.0017 0.8783 0 

Condition: k4 varies within (Gaussian, SD = 5%), between (uniform 0 to 10%) VND varies between 
(Gaussian, SD = 5%) 

 slope intercept R % Outliers 
∆BP 2TC indirect 0.9094 0.0239 0.0079 15% 
∆BP 2TC 0.9851 0.0185 0.0241 0.3% 
∆BP 1 scan 0.9996 0.0188 0.0658 0 
∆BP 2 scan 0.9969 0.0108 0.1245 0 
∆VT 2TC 1.0429 0.0051 0.2859 0.2% 
∆VT 1 scan 1.0269 -0.0016 0.7280 0 
∆VT 2 scan 0.9731 0.0057 0.8606 0 

 Regression of parameter estimates for each method against true simulation parameters.  ∆BP 2TC 123 
indirect used cerebellum VT to estimate regional BPND indirectly as a function of distribution volumes.  124 
Cerebellum VT was set to 20% greater than VND.  The other 2TC method used direct estimation of k3/k4 125 
for BPND.  Fits for which |∆BPND| > 80% or |∆VT| > 100% were considered outliers and not included in 126 
the regression.  127 
 128 
  129 
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eMethods.3  fMRI Methods 130 
 131 
  132 
SOWT Task. The participants completed 24 trials of the SOWT, with each trial containing eight steps on 133 
which response was required. At the start of each trial, eight simple line drawings of three-dimensional 134 
objects were presented in a 3 × 3 grid, with the central position of the grid being empty. The stimuli were 135 
the same as those used by Curtis and colleagues 4.  Unique stimuli were used on each of the first 12 trials, 136 
and stimuli were repeated exactly once during the latter 12 trials. On each step, participants had 7 s to move 137 
a mouse cursor to select any object that had not been selected on a previous trial (thus, all responses were 138 
correct on the first step). Once a selection was made, a white outline was displayed around the selected 139 
object until 9 s had elapsed from the start of the step. At this point, the objects in the display were pseudo-140 
randomly rearranged in the grid, with the blank space appearing in the same location as the most recently 141 
selected item (to prevent participants from using a spatial strategy or simply responding in the same 142 
location on each trial). If no response was made within 7 s, a white outline was displayed for 2 s around a 143 
randomly selected object that would have been a correct response; participants were instructed to remember 144 
this object as if they had selected it themselves. If an incorrect selection was made, a red box was displayed 145 
over the object until 7 s had elapsed from the start of the step, after which the same procedure was followed 146 
as in the case when a participant made no response. The ITI was 9 s. 147 
 Data acquisition. Imaging was carried out on a Philips 1.5 Tesla Intera scanner at the Columbia 148 
Radiology MRI Center at the Neurological Institute of New York. Participants lay supine on the scanner 149 
bed while viewing stimuli projected onto a screen located at the foot of the scanner bed through a mirror 150 
mounted on the head coil. The cursor was controlled with a hand-held fiber optic trackball with buttons on 151 
either side. T1-weighted images were obtained with an SPGR sequence with a 256 mm FOV, 200 slices, 152 
and 1 mm isotropic voxels. Whole-brain functional EPIs were obtained using an 8-channel SENSE coil 153 
with a 2 s TR, 28 ms TE, 77° flip angle, 192 mm field of view, 40 slices, 3 mm isotropic voxels, and 154 
SENSE factor of 1.5. The relatively small slice thickness precluded acquisition of data on the ventral most 155 
portion of the cerebellum in a large majority of participants; however, this region was not of particular 156 
interest in the present study. Participants completed nine runs of 160 volumes each that included either 157 
three task trials or two task trials and one control trial between the two task trials. Thirty seconds of rest 158 
occurred after each trial, and 32 seconds before the first trial in each run. 159 
 Data preprocessing. Preprocessing was performed with a combination of SPM8 and custom 160 
Matlab scripts. Reconstructed PAR/REC format files were obtained from the scanner and converted to 32-161 
bit floating point precision Analyze format files. A rough in-brain mask was computed and in-brain signal 162 
values were used to identify artifactual volumes: any volume departing from a sliding window by more 163 
than eight mean absolute deviations in terms of either mean global signal or Mahalanobis distance was 164 
identified and treated as a nuisance regressor during first-level statistical analyses.  165 
 Data then underwent slice-timing correction using SPM8 and motion realignment using 166 
INRIAlign (Freire, Roche, & Mangin, 2002). Motion realignment parameters were inspected to detect 167 
excessive motion; one run from each of two participants (one patient and one control) were excluded from 168 
analyses due to translation greater than 2.5 mm or rotation greater than 2.5° from their median position 169 
during the run. EPI images were then coregistered to the individual subjects' T1 image used for drawing of 170 
ROIs for PET analyses. PET ROIs were then resliced into a 3 mm isotropic voxel space to match the EPI 171 
data, and these resliced ROIs were used on an individual-subject basis to extract BOLD activation to the 172 
task. For calculation of group-level activation maps, images underwent spatial normalization to the ICBM 173 
template using the segmentation algorithm in SPM8 and spatial smoothing with an 8 mm FWHM kernel.  174 
 First-level statistical modeling. Prior to first-level modeling, the value in each voxel in each 175 
volume was divided by the mean value in that voxel over the entire time-series, expressed as a percent, so 176 
that the magnitude of the first-level hemodynamic response function (HRF) estimates were equivalently 177 
scaled across runs. Data for each participant were modeled in the GLM framework implemented in SPM8. 178 
A three parameter HRF model (with temporal and dispersion derivatives) was used to estimate the Blood 179 
Oxygen Level Dependent (BOLD) response to each modeled event. An explicit mask was calculated by 180 
using the conjunction of the smoothed (6 mm FWHM) gray matter segmentation and the skull-stripped 181 
mean EPI for each subject, to restrict the analysis to regions of gray matter and regions not suffering from 182 
excessive signal dropout due to susceptibility artifacts, respectively. 183 
 A separate set of regressors was used to model each of the eight steps of the SOWT and the 184 
control task as a nine second boxcar (resulting in 27 regressors in total, due to the three parameter HRF 185 
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model). Although participants had only seven seconds in which to make a response, we opted to use the full 186 
nine seconds of each step in order to capture the period of time in which participants were presumably 187 
attempting to maintain previously selected items in WM.  Error trials on any of the task steps and on the 188 
control task made up two separate sets of regressors (six total), again modeled as nine second boxcars. A 189 
two second boxcar was used to model the presentation of textual instructions prior to each trial, and motor 190 
responses (button presses) and error feedback (red square appearing over the incorrectly-selected item) 191 
were modeled as instantaneous events in order to prevent motor and visual activity from being confounded 192 
with other modeled events.  Finally, nuisance regressors included all six motion parameters estimates (three 193 
translation parameters and three rotation parameters), the squared motion parameters, the first derivative of 194 
the motion parameters, the squared derivative of the motion parameters, and dummy regressors for 195 
artifactual scans identified as outlined above. Activation at each step of the SOWT and during the control 196 
task was quantified as the area under the curve (AUC) in a temporal window ranging from 2 s to 9 s with 197 
respect to the three basis functions defining the canonical HRF; this window corresponds to the rise and fall 198 
of the HRF following the initial dip and prior to the undershoot.  199 
 Second-level statistical modeling. Contrast images of overall task-related activation were 200 
calculated for each participant by taking the mean activation at each voxel across steps one through eight in 201 
the SOWT and subtracting the activation in the corresponding voxel in the control task. These contrast 202 
images were then tested for significance using robust regression5 and thresholded at P < 0.05 after false 203 
discovery rate (FDR) correction6. 204 
 Relationship between fMRI BOLD with PET ΔBPND in DLPFC. Voxels showing significant task-205 
related activation in either group were returned to individual-subject spaces by using the inverse of the 206 
normalization transformation produced during segmentation. BOLD percent signal change values were 207 
extracted for each subject from voxels that were significant at the group level and also fell within the 208 
DLPFC ROI drawn for a given participant. These percent signal changes values were then used in a 209 
regression model with ΔBPND. Model selection was determined based on Akaike information criterion7. 210 
 211 
 212 
  213 
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eMethods.4  Adjusted Hit Rate Formula for the N-Back Task 214 The hit rate (HR) was calculated as the number of correct responses divided by the number of targets 215 (maximum is 1, minimum is 0). The error rate (ER) was calculated as the number of errors divided by the 216 number of non-targets (maximum is 1, minimum is 0). The adjusted HR (AHR) was calculated as HR – ER. AHR 217 ranges from 1 (if the subject provided all the correct responses and no incorrect response) to –1 (if the subject 218 provided no correct response and all the incorrect responses). Operating at chance level corresponds to an AHR 219 of 0.. 220 
 221 
 222 

eResults.1  Drug Naïve vs Drug Free Patients 223 
The drug-naïve (DN) patients had higher BPND (t = 2.96, p = 0.008) and lower ΔBPND (t = -2.12, p = 224 
0.048) and ΔVT (t = -2.28, p = 0.035) in the DLPFC than the drug-free (DF) patients. However, these 225 
groups differed in age (DN: 25.9 ± 7.2 years; DF: 36.1 ± 10.0 years; t = -2.24, p = 0.038). Given the well 226 
documented effect of age on cortical D2R parameters8,9  analyses were repeated with age as a covariate.  227 
With age included, there are no significant group differences for BPND, ΔBPND or ΔVT.  DLPFC BPND 228 
and ΔBPND do not correlate significantly with duration of illness or drug-free interval. DLPFC VT 229 
correlates negatively with duration of illness in the total group of patients (r = -0.538, p = 0.014), which is 230 
largely driven by the drug-free patients (r = -0.547, p = 0.043). 231 
 232 

eTable.2  VT Results 233 
eTable 2.  Distribution volumes (VT) 234 

HC (n = 21) SCZ (n = 20) 

Baseline Post-Amph ∆VT Baseline Post-Amph ∆VT 

CEREBELLUM 4.6 ± 1.1 4.4 ± 1.1 -2.9 ± 7.5% 4.2 ± 1.0 4.3 ± 1.1 2.1 ± 7.8% 

DLPFC 9.2 ± 2.6 8.7 ± 2.4 -4.8 ± 6.9% 8.1 ± 2.8 8.2 ± 2.8 0.9 ± 7.1% 

OFC 9.4 ± 2.6 8.9 ± 2.4 -3.9 ± 8.4% 8.4 ± 3.0 8.5 ± 3.1 1.1 ± 6.8% 

MFC 9.5 ± 2.5 9.1 ± 2.4 -3.2 ± 8.0% 8.6 ± 2.8 8.6 ± 2.8 0.2 ± 7.1% 

A. CING 10.5 ± 2.9 10 ± 2.7 -3.8 ± 9.6% 9.4 ± 2.9 9.6 ± 3.0 2.2 ± 8.6% 

OCC CTX 9.1 ± 2.8 8.7 ± 2.5 -4.3 ± 7.4% 8.2 ± 3.0 8.3 ± 3.2 1.1 ± 6.5% 

PAR CTX 9.8 ± 2.8 9.4 ± 2.6 -4.2 ± 6.3% 8.8 ± 3.3 8.8 ± 3.3 0.5 ± 6.7% 

TEMP CT 14.6 ± 4.1 14 ± 3.9 -4.1 ± 7.6% 13.1 ± 5.0 13.1 ± 5.1 0.1 ± 6.9% 

SUB GEN 11.2 ± 3.3 10.8 ± 2.6 -1.6 ± 11.6% 10.3 ± 3.7 10.5 ± 3.4 3.1 ± 11.9% 

INSULA 14.4 ± 3.9 13.9 ± 3.7 -3.2 ± 7.8% 13.4 ± 4.5 13.7 ± 4.9 1.8 ± 7.7% 

AMYGDALA 24.5 ± 8.9 23.7 ± 7.9 -1.7 ± 13.8% 21.4 ± 7.2 21.8 ± 8.0 1.8 ± 9.2% 

HIPPOCAMPUS 13 ± 4.6 12.3 ± 3.9 -3.9 ± 10.1% 11.2 ± 2.8 11.2 ± 3.3 0.1 ± 8.0% 

SN/VTA 20.8 ± 6.5 19.9 ± 6.1 -3.7 ± 10.5% 18.5 ± 5.7 18.9 ± 5.8 2.3 ± 8.9% 

THALAMUS 26.8 ± 9.3 25.7 ± 8.4 -2.7 ± 10.1% 23.4 ± 8.7 23.9 ± 9.2 2.4 ± 8.6% 

UNCUS 17.9 ± 6.0 16.9 ± 5.7 -4.7 ± 13.1% 15.9 ± 5.6 15.8 ± 6.1 -0.9 ± 9.5% 
Region Distribution Volumes at baseline, following amphetamine, and their percent change  235 
 236 
 237 
  238 
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e Figure.1  Scatterplots of fitted vs true results from a representative simulation where all 3 assumptions 273 
were violated:  k4 varied across regions and increased between scan conditions and VND changed 274 
randomly between scan conditions.  BPND decreased following amphetamine randomly between 0 and 275 
10%.  In this set of simulations the BPND change was always contributed to by increased k4 across 276 
conditions but the 2 scan method still gave the best estimates of the changes in BPND and VT across 277 
conditions even though the approach fits a single k4 across scans.  278 
 279 
 280 


