Supplementary Materials

Gene	Primer sequence (5'-3')	Length (bp)	Accession number
CenRep	F: GGTATTGTTGTTTGTTTGGTGATT	221	Z75640
	R: AAAATTTATTCCTCAAACCCAATTT	231	
Thy 1	Outer		
	F: GGTAGGGAGGTTATGGAAGTTA	407	
	R: TAAATTCATTTACATTATAATACAACC	497	
	Inner		NC_010451
	F: GGAAAGGTTTTGGTTTTAAGG	205	
	R: TCCAAAACTCTTAACATCCTACA	395	
Oct4	Outer		
	F: ATTAGATTTGTGTGAGGATTTGAGAG	400	
	R: AAAACCCAATAAAACCAAAACTCTC	409	
	Inner		NC_010449
	F: GTGTATAGAGTAGTGGAGAGGG	240	
	R: CCCAATCCCACCCACTAA	249	
Igf2/H19	Outer		
	F: GGTTTTAGGGGGGATATTTTTT	384	
	R: TTAAAAAAACATTACTTCCATATAC		
	Inner		AY044827
	F: GATTTTTAGGTTTGTTATTATTT	208	
	R: CAAATATTCAATAAAAAAACCC		

Supplementary Table 1. Detail of primers for bisulfite sequencing

Note: primers for CenRep or Igf2/H19 were from published papers [1, 2].

Gene	Primer sequence (5'-3')	Length (bp)	Accession number
Oct4	F: GAAGGTGTTCAGCCAAACGAC	195	NM 001112060
	R: CGATACTTGTCCGCTTTC	165	NM_001113060
Nanog	F: CCTCCATGGATCTGCTTATTC	200	NM_001129971
	R: CATCTGCTGGAGGCTGAGGT	209	
Sox2	F: AACCAGAAGAACAGCCCAGAC	155	NM_001123197
	R: TCCGACAAAAGTTTCCACTCG	155	
Dnmtl	F: GCGTCTTGCAGGCTGGTCAGTA	150	NM_001032355
	R: CTTCTTATCATCGACCACGACGCT	132	
Dnmt3a	F: ATGTGGTTCGGAGACGGCAAGT	105	NM_001097437
	R: GCTCTCGTCGTTGTCATGGCA	193	
Igf2	F: CCGTGGCATCGTGGAAGAGTG	170	NM_213883
	R: TCCAGGTGTCATAGCGGAAGAAC	170	
Thy l	F: AACCCTACCATTGGCATCGCT	142	NM_001146129
	R: TGAATGGGCAGGTTGGTGGT	143	
	F: AGATGTACTTAAACAGGGACATTTG		
Col5a2	GA	124	NM_001105289
	R: GTTATGGGGTCAGCACATTCAAGC		
Eifla	F: AGATGAGGCTAGAAGTCTGAAGGC	112	NM_001243218
	R: CAATGTCATCAAACTGGATTTCATC	115	
ATP1b1	F: CCACCAGGATTAACACAGATTCC	195	NM_001001542
	R: TCTTTGAGTTCGCTGGGCAC	183	
Cdx2	F: GACAAGGACGTGAGCATGTATCC	220	XM_003130908
	R: CGTAGCCGTTCCAGTCCTCG	220	

Supplementary Table 2. Detail of primers for quantitative real-time PCR

Bax	F: CAGTAACATGGAGCTGCAGAGG	150	AJ_606301
	R: GCCTTGAGCACCAGTTTACTGG	139	
Bcl211	F: CTGGTGGTTGACTTTCTCTCCTAC	110	NM_214285
	R: GTTTCCGCTTCTGATTCAGTCC	119	
β2m	F: CTTTCTACCTTCTGGTCCACACTG	116	NM_213978
	R: GTGGTCTCGATCCCACTTAACTATC	110	
18s	F: AATCTCGGGTGGCTGAACGC	142	NR_002170
	R: CCGTTCTTAGTTGGTGGAGCGAT	143	

Supplementary Fig. 1. Cloned blastocysts (× 40) derived from untreated PFFs (A), PFFs treated with 10 nM 5-aza-dC (B) or PFFs treated with 1 uM (C), 2 uM (D) or 5 uM (E) 5-methyl-dCTP.

Supplementary Fig. 2. Cell morphology (A), cell proliferation (B) and cell cycle (C) of donor cells after treatment with 10 nM 5-aza-dC (aza-10) or 5 uM 5-methyl-dCTP (methyl-5).

Supplementary Fig. 3. Methylation status of the *CenRep* region in cloned blastocysts of the control (A), aza-10 (B) or methyl-5 (C) group. Black or white circles represent methylated or unmethylated CpG sites, and gray circles represent mutated and/or single nucleotide polymorphism (SNP) variation

at certain CpG sites.

Supplementary Fig. 4. Blastocyst cell apoptosis after 5-aza-dC (aza-10) or 5-methyl-dCTP (methyl-5) treatment. A, the status of blastocyst cell apoptosis in the IVF, control, aza-10 or methyl-10 group; B, the percentage of blastocyst cell apoptosis in the IVF, control, aza-10 or methyl-10 group.

The images of blastocyst cell apoptosis were magnified $(200 \times)$.

The number of blastocysts detected are indicated at the top of the column chart.

^{a-d}Percentages ($\% \pm$ SEM) in columns with different superscripts differed significantly (P< 0.05).

References

- Park CH, Kim HS, Lee SG, and Lee CK. Methylation status of differentially methylated regions at Igf2/H19 locus in porcine gametes and preimplantation embryos. Genomics 2009; 93: 179-186.
- 2. Zhao MT, Rivera RM, and Prather RS. Locus-specific DNA methylation reprogramming during early porcine embryogenesis. Biol Reprod 2013; 88: 48.