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Section 1. Analysis of Hepatic Fat-water Content in Patient Population

Our study investigates the effect of fat suppresg$kstS) via chemically selective saturation (CHESS)
(1) on the transverse relaxation rate R2* of théewaignal, i.e. the water peak. However, hepaic f
presents a major confounder in R2* quantificati@dy 6o that potential R2* differences without and
with CHESS could arise from both the applicationtttd CHESS pulse and the presence of fat. To
evaluate the effect of CHESS on R2* in a controligdup, each enrolled subject was retrospectively
tested for potential hepatic fat infiltration. Thepatic fat fraction (FF) was estimated for eadbjext
following an approach described in (3,4). Subjedth an elevated FF of 5% were excluded from
further analysis. The threshold value of 5% wasetlasn the onset criterion for hepatic steatosis
(grade 0 less 5%, (5)).

In short, for each 1.5 T multi-echo gradient echtGRE) data set without CHESS, 3 small
circular regions of interest (ROIs) were drawn ifiedent regions of the liver on a magnitude image
that clearly discriminates liver parenchyma, blo@ssels, and surrounding tissues. The ROIs were
selected in the liver parenchyma so that any urneeastructures such as blood vessels were excluded.
For each ROI, the averaged magnitude mGRE signalfiitad to a signal equation that considers
water and multiple fat peaks (6) and employs at jBi* parameter for both components. The fitting
routine was implemented in MATLAB (The MathWorksatitk, MA) using in-built non-linear least

square (NLSQ) functions. A mean hepatic FF wasutatled from the mean value of the FF values
found in the 3 ROls.
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(@), (c) Selection of ROIs in liver parenchyma and (b), (d) associated averaged magnitude
MGRE signals (blue crosses) together with results from non-linear least square fit (solid
lines) described in (3) for two cases (case 1: mean hepatic FF = 1.9%, case 2: mean hepatic
FF: 12.6%). Subjects with a mean hepatic FF of > 5% were excluded from further analysis.



Supporting Figure S1 illustrates selection of R@ileg evolution of the corresponding average mag-
nitude signals (blue crosses), and fitted signsddid lines) for two cases. Based on our threshold
value (FF> 5%), 5 cases with elevated hepatic fat contentréfige: 5.9-30.0%; all 5 cases grade 1
according to (5)) were found within our entire pati population (80 subjects overall) and excluded

from R2* analysis.

Section 2: Modeling of Spectral Saturation Effect of CHESS based on Numerical
Implementation of Fourier Transformation

Our proposed heuristic model which allows for arection of CHESS-induced R2* changes at 1.5 T
does not follow a formal mathematical derivatiom the following, an alternative, formal
mathematical derivation of the CHESS-induced haolming is presented and evaluated.

As described in the section ‘Heuristic Descriptafrthe Effect of CHESS on R2* of the main
text, the noise-free, mono-exponential MGRE sigleglay translates into a Lorentzian profilg; in
frequency domairf. We assume that the CHESS pulse causes spectealbhming in such that
spectral signal components within the frequencydbafrthe CHESS pulses are saturated depending on
the spectral profild=sar of the CHESS pulse. The resulting spectral si@a! in frequency domain
after the application of CHESS would be given bg thultiplication of S, and a band pass filter
function (1 —Fsa7):

2IR2*

SSAT(f):S_m(f)[(U'_ FSAT(f)) where SLor(f): R *2 +(2nEf)2

The observed time domain sigrgft) could then be calculated via inverse Fourierdfammation (FT)

[S1]

of Ssar. In our heuristic description, we approximatéghr as a rectangular saturation band (‘FS
band’) with center frequendy and bandwidth BW according to the parameters ®GRESS pulse.
The rectangular FS band is mathematically represeoy a boxcar function so that signal components

within the FS band are fully saturated whereasasigpmponents outside remain unchanged:

{1 for f,+BW/2<f < f,+BW/2

case (i): FSAT(f ) = [S2]

0 elsewhere

As we employed the vendor’'s (Siemens Healthcarengen, Germany) standard Gaussian CHESS

pulses, the model could be improved by using a atzed Gaussian function to describg:

)2
case (ii): Four(f)= exp{— 40n(2) fBV\jg) J [S3]

In both cases, boxcar and Gaussian CHESS profiesrse FT ofSar leads to mathematical

expressions involving the error function and expiad integrals respectively. Unfortunately, these
expressions cannot be solved analytically whictvgmés direct non-linear least square fitting of the
band pass model to the measured data. We impledhanteerical simulations to further investigate

the formal band pass approach for modeling of tHEES effect: For a given R2* value, the
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associated Lorentzian spectral distribution wasuwtated and multiplied with (1 Fsa7) according to

Eq. S1. The time evolution of the resulting sig8#@l was then calculated from the discrete sum of the
dephasing signal components according to theireasm off-resonance frequencies and signal
amplitudes. Finally, the magnitude signal was nuecadly obtained from the absolute value of the

complex sum of all contributing signal componeitsd certain time poirtt

_ 2[R * ~
S(t)= Z‘SO DRZ T ) - For (f)) Cexp2n G COF 0) [S4]

In Supporting Figure S2, resulting signal curves sinown for R2* values of 100, 300, 600, and
1200 1/s at 1.5T and 3 T. The gray solid linedciaig the numerically simulated mGRE signal
without CHESS, i.eFsat = 0 everywhere. The simulated mGRE signal (acogrdo Eq. S4) under
the influence of CHESS is indicted by the red (lmwx€HESS profile) and blue solid (Gaussian
CHESS profile) lines. For both field strengths, taxand Gaussian CHESS profiles lead to very
similar alterations of the mono-exponential sigadaicay. Especially for the higher R2* values,
oscillations in the FS signal evolution can be saem result of the band pass filter effect due to
CHESS.



Step 1: Numerically simulate Step 2: Discretize simulated signal

signal evolution and apply exponential fit
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Fig. & Numerically simulated mGRE signal without and with CHESS for 1.5T (top) and 3T
(bottom). In the left panels, the gray lines indicate non-FS mGRE signal for 100, 300, 600,
and 1200 1/s. The red and blue lines indicate the simulated signal evolution assuming boxcar
and Gaussian CHESS profiles respectively. As a second step, the simulated signals were
discretized according to the TEs of the employed mGRE sequence and fitted to a mono-
exponential function to calculate pairs of non-FSand FSR2* values (right panels).

The numerical approach does not directly yieldaogoof non-FS and FS R2* values which would be
required for a correction of CHESS-induced chand&sulating the discrete temporal sampling
pattern of the mMGRE sequence, the numerically sitedl signals were discretized according to the
TEs of the employed mGRE sequence and fitted tooigerfree mono-exponential function to
calculate pairs of non-FS and FS R2* values. Tteip & also illustrated in Fig. S2 (panels on igatr
side). Following these two steps, numerical siguiralulation and fitting of discrete signal time pisin

FS R2* values were calculated for a range of norR2S values from 0-2250 1/s. The results are
shown in Supporting Figure S3 where red lines im@icesults assuming boxcar CHESS profiles, and
blue lines indicate results in the case of GausSidESS profiles. The solid lines represent theltesu
for 1.5 T, and the dashed lines represent the &tilts. For 1.5 T, simulated FS R2* values deviate
substantially from the non-FS R2* values for valabsve 300 1/s. For 3 T, the FS R2* values closely
follow the non-FS R2* values up to approximately0Q@/s (boxcar CHESS profile) and 1500 1/s
(Gaussian CHESS profile), but also exhibit subghoteviations towards high R2* values. On the
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panel on the right side of Fig. S3, the resultsrfon-FS and FS R2* values based on our heuristic
model together with the measured data for bothl fstengths are included. In contrast to the formal
band pass description, our model is able to cdyrdetscribe the non-FS R2* values at 1.5 T. For 3 T
no changes in R2* due to CHESS were seen. Ourigégermodel as well as the formally derived

model fails to correctly explain the results.
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Fig. S3 Left pand: Plots of non-FS vs. FS R2* values as retrieved from a formal mathematical
description of the CHESS-induced spectral hole burning. Solid lines indicate 1.5 T resullts,
dashed lines indicate 3T data. Red color represents values assuming a boxcar CHESS
profile, blue represents the values in case of a Gaussian CHESS profile. Right panel: In
addition to the data shown on the left, non-FS and FS R2* according to our heuristic model
(green) areincluded together with the measured data.

The formal mathematical description of CHESS-induspectral hole burning as a band pass filter
effect leads to an oscillatory pattern of the mGRignal with FS (cf. Fig. S2, left panels).
Consequently, the measured R2* values would berdipe on the sampled TEs. As the measured
R2* values were quantified on the basis of monoeeential signal models (fit (i)-(ii))), a potential
model mismatch in the R2* extraction could alsodlda a discrepancy between measured and
simulated data. Therefore, we directly comparedsmes=l and simulated signal decays exemplarly for
the low, medium, and high R2* range (i.e. low, nugoalj and high iron levels) for both field strengths:
For both types of signals, measured and simulaigdal decays were normalized to the respective
signal intensity found at the first echo time (J.EThe measured signals were obtained from the
averaged magnitude signals for non-FS and FS dtigngsfound within small circular hepatic ROIs
which were located in the center of the right lil@ve. To numerically calculate the associatedadign
decay according to the band pass model (Eq. S&mtasured non-FS R2* value (non-FS R2* values
for each case are given in the respective subgfl@éig. S4) was used as an input to Eq. S4. Please
note that Eq. S4 still incorporates the ‘originain-FS R2* value from the undisturbed line profile.

The results are shown in Fig. S4.
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Fig. 4 Measured non-FS (circles) and FS (diamonds) together with simulated signal data at 1.5 T
(top row) and 3 T (bottom row). No oscillations as expected from the formal band pass model
are visible in the FS data. However, background noise needs to be considered during R2*
fitting as can be seen from a constant signal offset in the measured data for longer TEs.

As can be seen from Fig. S4, oscillatory pattemthé signal decay as would be expected from the
formal band pass model are not present in the medsignal evolutions of the mGRE data with FS.

Both signals, non-FS and FS, rather follow a moxmeeential decay (indicated by the gray solid

lines). However, the effect from image noise netedse considered in the R2* extraction especially
for higher R2* values (as done via fit (i)-(iii) tmed in section ‘Presence of Hepatic Fat, R2*

Mapping, and Statistical Analysis’ of main text) ian is reflected by a constant signal offset in the

measured data for longer TEs.

Based on these findings, we conclude that the fobraad pass model does not provide an
improved way to describe the effect of CHESS on.R2ir data also indicates that a potential model
mismatch in the R2* extraction of the FS data g®tential explanation for the observed R2* bias at
1.5 T appears very unlikely. Both models, heuriatid formal band pass description, assume spectral
broadening as a purely inhomogeneous line broadesfiiect (i.e. line broadening only due to field
inhomogeneity effects) and for example neglect dgiig irreversible homogeneous T2 line
broadening. Therefore, both models fail to compyetend fundamentally describe the effect of
CHESS on R2* in iron overload. Such a fundamentableh would require other effects such as
homogeneous line broadening, effects from imagesejoand BO and Bl inhomogeneities to be
considered as well in order to correctly explaie theasured data at both field strengths (please als

refer to Section 3 below and Discussion of mairt)teMevertheless, although our proposed model



does not follow a formal mathematical derivatianstill allows to describe and correct the CHESS-

induced R2* changes seen at 1.5 T.

Section 3: Evaluation of Potential R2* Changes dueto CHESS in Phantoms

To further study the behavior of R2* under theuefice of CHESS in a reproducible and controllable
setting (improved shim conditions to minimize etfeédrom magnetic field inhomogeneities etc.),
phantom measurements were made. Three differees typreadily available phantom solutions were
used with R2* values covering the clinically relavaange for transfusional iron overload. Two
phantom solutions contained iron particles (irortipke type 1: bionized nonferrites — BNF, diameter
80 nm; iron particle type 2: dextran-coated supenpagnetic iron oxide nanoparticles — DSPIO,
diameter: 100 nm; micromod Partikeltechnologie GmRidstock, Germany), and for the third set of
phantoms MnCI2 solutions were used. The phantonmishwliere doped with iron particles (two-fold
dilution series, iron concentration for BNF/DSPI@aptoms: 0.4-220/0.2-125 pg/g) were made from
2% agarose (Sigma-Aldrich, St. Louis, MI) and hatbtal volume of 500 ml filled into cylindrical
plastic bottles. The MnCI2 phantoms (MnCI2 concatntns: 0-3.2 mM) had a volume of about 50 ml
filled in small cuboid plastic bottles and wereckizd in a box (FerriScan R2-MRI phantom box,
Resonance Health, Claremont, Australia; (7)).

The same mMGRE sequences without and with CHES®@9gals described in the section ‘MRI
protocol’ of the main text were used for R2* measnents at 1.5 T and 3 T. In addition, spin echo
sequences (TR = 5000 ms, matrix size: 128x96, #fimkness: 6 mm, pixel bandwidth: 800 Hz/px,
flip angle: 90°) with different spin echo timesrige of TEs: 4-30 ms) were applied to measure R2.
For the R2* measurements, the iron doped phantoens placed in the iso-center of the magnet and
scanned individually with the symmetry axis of #yindrical bottle aligned with the main magnetic
field BO to minimize field inhomogeneities. Imagesre acquired with the MR system’s head coil.
For the R2 measurements, the phantoms were stackélde patient table and data acquisition was
done with the spine array and body array coils. Mim€I2 phantom box was placed in the system’s
head coil for R2* and R2 scans. For all phanton#s,\Ras calculated using the 3 different R2* fitting
routines as described in the section ‘Presenceepitic Fat, R2* Mapping, and Statistical Analysis’
of the main text. R2 fitting was done via fit (iifhe results from the R2* and R2 measurements in

phantoms are summarized in Supporting Figure S5.
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Fig. &5 (a) Non-FSR2*, FSR2*, and R2 measurements in 3 different phantom types (top row: BNF
particles, circles; mid row: DSPIO particles, rectangles; bottom row: MnCl2, triangles) at
15T. For R2* quantification, the same 3 fitting models were applied as in patients. R2
quantification was done using fit (ii). (b) Corresponding 3 T results.

The BNF-doped phantoms showed the strongest R&ttethpproximate R2* range: 20-2700 1/s).
R2* values for the SPIO phantoms were within 20-864) and for the MnCI2 phantoms within 3-
250 1/s. In the patient data, we found systemdtanges in the FS R2* values compared to the non-
FS R2* at 1.5 T. Such an effect could not be olegim the phantom measurements either for 1.5 T
or for 3 T. The slopes of the linear regressionhais between non-FS and FS R2* values were all
very close 1 (range: 0.971-1.025) whereas in pttitre slopes of linear regression between non-FS

and FS R2* values at 1.5 T were approximately betw®.8 and 0.9 (cf. Table 2 in manuscript).
8



Although the realized R2* values for the MnCI2 pteans might be too low to capture the R2*
changes as seen in patients (CHESS-induced R2*gekastarted to emerge at approximately 400-
500 1/s, cf. Fig. 3), similar R2* changes could éogected for the SPIO and BNF phantoms with
higher iron concentrations.

Overall, the phantom measurements did not showdRahges due to CHESS as seen in patients.
To further investigate the reason for this behagwadditional R2 measurements were made. We found
that for the SPIO and MnCI2 phantoms, R2* and R2 ragarly identical (range of slopes of linear
regression: 0.996-1.013). For the BNF phantoms, R&% approximately twice as high as R2 (slopes
of linear regression: 2.047-2.071). This means, éwvas, that for all phantoms the underlying T2 line
(homogeneous line broadening) is already substhgntieoadened and similar to the T2* line width
(inhomogeneous line broadening).

In the light of these results, it is important toten that in case of homogeneous T2 line
broadening, the CHESS pulse does not lead to gppdudte burning in a sense that water signal
components within the frequency band of the CHEBSISepare saturated and thus removed from the
observed mGRE signal (please also see Discussiomanf text). The CHESS pulse rather partially
saturates the entire spin ensemble (8,9). Suchunatian effect would lead to a reduction of the
overall detectable signal without altering the uhdeg T2 line profile so that R2 remains unchanged
In the scenario of transfusional iron overload, beer, R2* and R2 differ approximately by a factor
of 3.5 and more for R2* values > 500 1/s at 1.%Xtracted from (10)), so that compared to the
employed phantoms, T2* broadening is more pronadirntb@n the underlying T2 broadening. In
consequence, CHESS can affect the 1.5 T T2* linéilprieading to the observed R2* changes. As R2
increases with BO in iron overload (2,11), the uhdieg T2 broadening might become more important
at 3 T and probably dominates the saturation efdédhe water peak due to CHESS. However, it
should be noted that R2* increases proportionaith B0 (12,13) whereas R2 only increases by a
factor of 1.4 from 1.5 T to 3 T (12). Thereforesdeoverlap of the CHESS pulse and the underlying T2
line would be expected at 3 T. Other effects naedd considered for a fully valid theoretical
description of the effect of CHESS on R2* in ironedoad in addition to homogeneous line
broadening.

Furthermore, the employed phantoms doped with m@moparticles or MnCI2 are only limited
candidates for mimicking than vivo scenario in transfusional iron overload. In a pas study,
Wood et al. (14) proposed ferritin-liposomal conxgle to mimic hepatic iron overload. However,
fabrication of such complexes and phantoms is tealyp demanding and beyond the scope of this
manuscript. Nevertheless, the phantom experimesifget in understanding why CHESS affects R2*

in transfusional iron overload at 1.5 T but noB at.
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