Global metabolic analyses identify key differences in metabolite levels between polymyxin-susceptible and polymyxin-resistant *Acinetobacter baumannii*

Mohd Hafidz Mahamad Maifiah¹, Soon-Ee Cheah¹, Matthew D. Johnson¹, Meiling Han¹, John D. Boyce², Visanu Thamlikitkul³, Alan Forrest⁴, Keith S. Kaye⁵, Paul Hertzog^{6,7}, Anthony W. Purcell⁸, Jiangning Song⁸, Tony Velkov¹, Darren J. Creek^{1,†}, Jian Li^{1,†,*}

¹Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.

²Department of Microbiology, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC, 3800, Australia.

³Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 73170, Thailand.

⁴UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7569, USA.

⁵Detroit Medical Centre and Wayne State University, University Health Centre, Detroit, MI, 48201, USA.

⁶Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.

⁷Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC, 3800, Australia.

⁸Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC, 3800, Australia.

†Joint senior authors: Jian Li, email: <u>Colistin.Polymyxin@gmail.com</u>, phone: +61 3 9903
9702, fax: +61 3 9903 9586; Darren J. Creek, email: <u>darren.creek@monash.edu</u>, phone: +61
3 9903 9249, fax: +61 3 9903 9583

*Corresponding author: Jian Li, email: <u>Colistin.Polymyxin@gmail.com</u>

Supplementary Information

Method for 16S rDNA gene sequencing

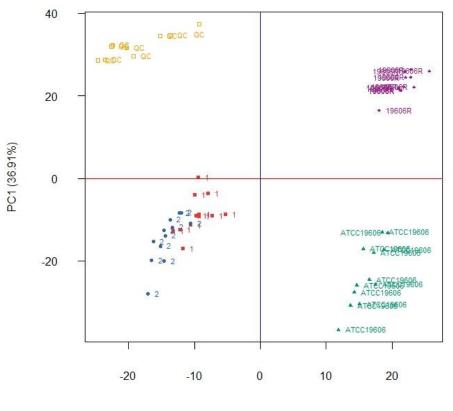
Degenerate oligonucleotide primers 16s_Fw CCTACGGGNGGCWGCAG and 16s_Rv GACTACHVGGGTATCTAATCC were used to amplify the 16S gene from each strain by PCR. The 16S fragment was purified by gel extraction (Qiagen) and sequenced using Sanger chemistry (Micromon, Monash University, Australia). Sequences were analysed using Eztaxon¹ and identification of phylogenetic neighbours was conducted using BLASTN² program against the database containing published prokaryotic representatives¹.

Supplementary	Table S1.	Phylogenetic	characterisation	bv	16S gene	sequencing
······································				- ,		

Strains name	Length (base pairs) ^a	Closest match ^b	Similarity % ^c	Completeness % ^d
03-149.1	446	ATCC 19606	96.17	30.6
03-149.2	442	ATCC 19606	97.15	30.4

^a Length of input sequence generated by sanger-based sequencing methodologies.

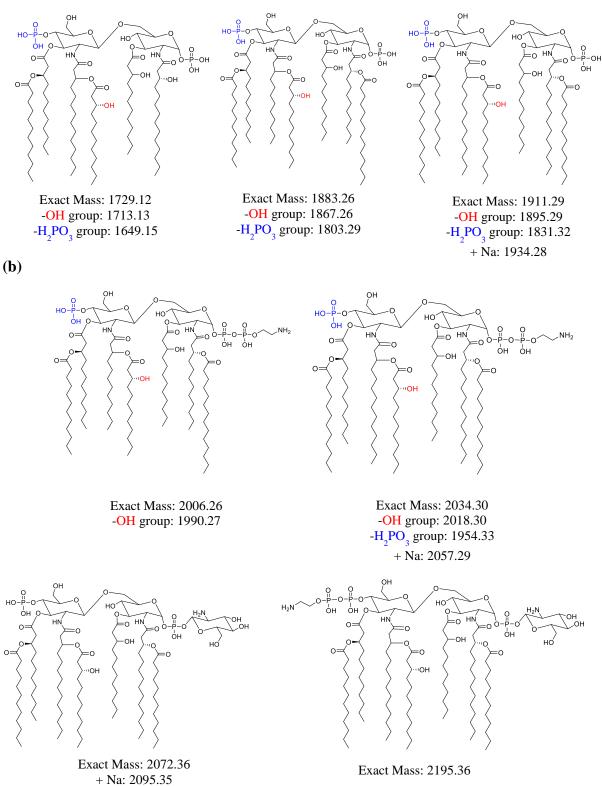
^b Closest match determined by BLASTn against a database of published prokaryotic representatives.


^c Similarity based on BLASTn search against the closest match.

^d Completeness accounts for the entire 16S gene of the closest match.

Supplementary Table S2. Mutations identified in the polymyxin-resistant 03-149.2 isolate

by high-throughput sequencing and variant calling to A. baumannii ACICU


Annotation by similarity to A.	Seq	uence	Effect	
baumannii ACICU	03-149.1	03-149.2		
Hypothetical Protein	CTTGAG	GCTTGAG	Frame shift	
PmrB Sensor Kinase	AAGC	A	Amino acid deletion (A28-)	
Phage-related protein	G	Т	Amino acid substitution (I241L)	

PC2 (21.96%)

Supplementary Figure S1. PCA score plot of the untargeted metabolomics dataset of paired polymyxin-resistant 19606R and the wild-type ATCC 19606 and paired of polymyxin-resistant 03-149.2 (blue and labelled with "2") and polymyxin-susceptible 03-149.1 (red and labelled with "1") clinical isolates. Each data set for individual strains represents a total of 12 sample replicates (3 biological replicates and each with 4 technical replicates). Yellow, pool quality control samples; purple, polymyxin-resistant 19606R; green, ATCC 19606; blue, polymyxin-resistant 03-149.2; and red, polymyxin-susceptible 03-149.1.

Supplementary Figure S2. Structures of lipid A in clinical A. baumannii isolates (a) 03-

149.1 and (b) 03-149.2.

References

- Kim, O. S. *et al.* Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. *Int. J. Syst. Evol. Micr.*62, 716-721 (2012).
- 2 Altschul, S. F. *et al.* Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res.* **25**, 3389-3402 (1997).