## Discovery of Superconductivity in Hard Hexagonal *ε*-NbN

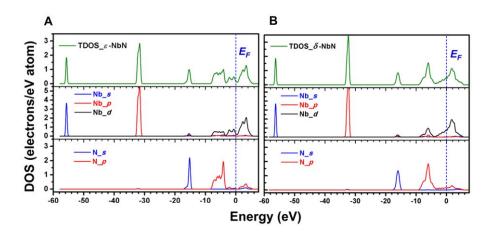
Yongtao Zou<sup>1,2</sup>, Xintong Qi<sup>3</sup>, Cheng Zhang<sup>4</sup>, Shuailing Ma<sup>1</sup>, Wei Zhang<sup>5</sup>, Ying Li<sup>2</sup>, Ting Chen<sup>3</sup>, Xuebing Wang<sup>3</sup>, Zhiqiang Chen<sup>2</sup>, David Welch<sup>4,6</sup>, Pinwen Zhu<sup>1</sup>, Bingbing Liu<sup>1</sup>, Qiang Li<sup>4</sup>, Tian Cui<sup>1</sup> & Baosheng Li<sup>2</sup>

<sup>1</sup>State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.

<sup>2</sup>Mineral Physics Institute, State University of New York, Stony Brook, N.Y. 11794, United States.

<sup>3</sup>Department of Geosciences, State University of New York, Stony Brook, N.Y. 11794, United States.

<sup>4</sup>Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, N.Y. 11973, United States.


<sup>5</sup>School of Science, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.

<sup>6</sup>Department of Materials Science and Engineering, State University of New York, Stony Brook, N.Y.

11794, United States.

\*Correspondence and requests for materials should be addressed to Y. Z. (E-mail: yongtaozou@jlu.edu.cn or yongtaozou8@yahoo.com);

\*\*The current ultrasonic, magnetization and electrical resistivity measurements were performed in the U. S. when Yongtao Zou was working at the State University of New York (Stony Brook).



## **Supplementary Materials**

Figure S1. (A). Total and partial density of states for hexagonal  $\varepsilon$ -NbN at ambient pressure,

in comparison with those for rock-salt structured cubic  $\delta$ -NbN (B). Reproduced with permission from Zou *et al.*, (2015). Copyright 2015 Nature Publishing Group.

## References

 Zou, Y., Wang, X., Chen, T., Li, X., Qi, X., Welch, D., Zhu, P., Liu, B., Cui, T. & Li, B. Hexagonal-structured ε-NbN: ultra-incompressibility, high shear rigidity, and a possible hard superconducting material. *Sci. Rep.* 5, 10811 (2015).